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Abstract
The basic frameworks and techniques of the Bayesian approach to image
restoration are reviewed from the statistical-mechanical point of view. First,
a few basic notions in digital image processing are explained to convince
the reader that statistical mechanics has a close formal similarity to this
problem. Second, the basic formulation of the statistical estimation from
the observed degraded image by using the Bayes formula is demonstrated. The
relationship between Bayesian statistics and statistical mechanics is also listed.
Particularly, it is explained that some correlation inequalities on the Nishimori
line of the random spin model also play an important role in Bayesian image
restoration. Third, the framework of Bayesian image restoration for binary
images by means of the Ising model is reviewed. Some practical algorithms for
binary image restoration are given by employing the mean-field and the Bethe
approximations. Finally, Bayesian image restoration for a grey-level image
using the Gaussian model is reviewed, and the Gaussian model is extended to
a more practical probabilistic model by introducing the line state to treat the
effects of edges. The line state is also extended to quantized values.

PACS numbers: 02.50.−r, 05.20.−y, 05.30.−d, 05.50.+q, 75.10.Nr, 89.70.+c,
03.67.Lx

1. Introduction

The design of filters for digital image processing is one of the major subjects of investigation
in information processing. An important motivation is the recent massive introduction of
image-processing devices into our daily life with not only personal computers but also digital
cameras and mobile phones with image-transmission capabilities. In many image processing
systems, the estimation of the original data from the given observed data is a task of primary
importance. In the conventional approach to image processing, systems are designed to
achieve this goal as accurately as possible. It is first clarified how the system generates the
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Figure 1. The data-generating system and its inverse system.
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Figure 2. Convention of axis labels used in the present review and a two-dimensional light intensity
function f (x, y) to represent a digital image.

observed data from the original data and then the inverse system is constructed as shown
in figure 1. Although a system constructed in this way behaves accurately under the same
circumstances as the assumed data-generating system, it may not yield the desirable behaviour
in other circumstances. In realistic cases where many users use the same system with different
input data, robust systems that can process a wide variety of data with uniform reliability are
highly desirable. The method of image processing using the ideas of statistical mechanics is
expected to provide a way towards such a goal.

Let us explain a few basic notions in digital image processing to convince the reader
that statistical mechanics has a close formal similarity to this problem. A digital image is
defined on the set of points arranged on a square lattice. At each point, the intensity of light is
represented as an integer number or a real number in the digital image data. A monochrome
digital image is then expressed as a two-dimensional light intensity function fx,y , where x
and y denote spatial coordinates and the value of fx,y is proportional to the brightness of the
image at the point (x, y) (see figure 2). The image can then be regarded as a matrix whose
row and column indices identify a point in the image, and the corresponding matrix element
value specifies the intensity of light at that point. The elements of such a digital array are
called pixels. An instance of a digital image of size 7× 7 with eight grey levels from 0 to 7 is
shown in figure 3.

In conventional digital image processing, various linear and nonlinear filters have been
designed to suit various purposes. The function of a linear filter is to take the sum of the
product of the mask coefficients and the intensities of the pixels. In the 3 × 3 spatial linear
filter, for example, the output f̂ x,y at each pixel (x, y) is given as follows:

f̂ x,y =
1

9

x+1∑
x′=x−1

y+1∑
y′=y−1

wx−x′ ,y−y′fx′,y′ . (1)
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(a) (b)

Figure 3. Digital image. (a) A 7×7 array with eight grey levels from 0 to 7. (b) The corresponding
digital image.

Thus the 3× 3 spatial linear filter is specified by the mask w:

w =

w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1


 . (2)

Common examples include the low-pass spatial filter and the high-pass spatial filter with the
following masks:

(i) Low-pass spatial filter: w = 1
9

(
1 1 1
1 1 1
1 1 1

)
.

(ii) High-pass spatial filter: w = 1
9

(−1 −1 −1
−1 8 −1
−1 −1 −1

)
.

Another type of filter is the median filter. In the 3 × 3 median filter, the output f̂ (x, y) is
given as the median of the input {fx′,y′ |x ′ = x − 1, x, x + 1, y ′ = y − 1, y, y + 1} in the
neighbourhood of the pixel (x, y). The median filter is a typical nonlinear filter.

These filters have been designed on heuristic bases. The low-pass filter and the median
filter are constructed for noise reduction. Particularly, the median filter can eliminate isolated
intensity spikes. On the other hand, the high-pass filter was proposed for the purpose of
sharpening the image and is applied to medical imaging, object detection and other purposes.
In order to achieve such robustness in conventional image processing, many of the filters are
designed usually under the assumption that digital images are generated and degraded only
in a specific system, and control parameters in the filters are adjusted so as to give the best
performance for the special test data (or supervised data) using statistical methods [1–3]. The
performance is then strongly dependent on the types of system and test/supervising data. Let
us explain this problem in an explicit example.

Image restoration is the problem where the original image {fx,y} is to be estimated from
the given degraded image {gx,y} as shown in figure 4. The degraded image {gx,y} is generated
by adding or multiplying some noise

gx,y =
∑
x′

∑
y′
Ax−x′ ,y−y′fx′,y′ + nx,y (3)

where nx,y is an additive noise andAx−x′,y−y′ is a blurring noise. To obtain the restored image
{f̂ x,y} by a filter

f̂ x,y =
1∑

x′=−1

1∑
y′=−1

wx−x′ ,y−y′gx′,y′ (4)
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Figure 4. Image degradation and image restoration.

the coefficients {wx,y|x = −1, 0, 1, y = −1, 0, 1}have to be determined. In order to determine
the coefficientswx,y , we prepare some test/supervising images {fx,y} and their corresponding
degraded images {gx,y} generated by equation (3). For these samples, the coefficients wx,y
are determined so as to minimize the sample average of

∑
x′
∑

y′(f̂ x,y−fx,y)2. This method is
clearly optimized to the specific type of noise in the test data. To design more robust systems
that can handle very general classes of problems facing end users in practical situations, it
is necessary to construct a theory on a more firm and systematic basis.

Many familiar filters for smoothing in image processing are designed on the basis of
the property that the intensity fx,y at the pixel (x, y) takes a similar value as those in the
same neighbourhood. This property should look analogous to the well-known ferromagnetic
property of spin systems. To push the analogy further, it is useful to note that the system for
processing images by smoothing can be translated into a classical ferromagnetic spin system
by replacing a pixel with a lattice site and by assigning each grey level to a spin state. If we
focus on binary image processing, we have only two grey levels, 0 and 1, as the values of
the intensity function fx,y . By introducing the replacement sx,y = 2fx,y − 1, all the possible
states at each pixel are replaced by±1. In this case, many statistical physicists will expect that
the corresponding smoothing filters may be designed using the ideas of physics, particularly,
of the Ising model. Possibly, some statistical physicists may even hope that they can achieve
a big breakthrough in image processing from their own standpoints, which is of course too
much to expect. In practical image processing, we have to consider not only fundamental
principles but also some detailed data structures. Moreover, the final goal may sometimes
not be image processing but pattern recognition, robot vision, artificial intelligence, neural
computation or other engineering applications. The criteria of performance inevitably depend
on the situations of practical applications. Nevertheless, some ideas and techniques of physics
may be useful to develop a new and universal theoretical foundation of image processing.
In particular, statistical mechanics is based on probabilistic theory, and it is very effective to
formulate the problem of image processing in terms of probability distribution. In this sense,
statistical mechanics provides a natural framework to bridge physics and image processing.
More precisely, Bayesian statistics is closely related to statistical mechanics as well as to the
foundation of systematic information processing in general.

This idea has been implemented successfully for many years. Derin et al [4, 5] first
formulated a framework for a probabilistic method of image processing based on Bayesian
statistics under the assumptions on the a priori information for the original images and
degradation process from the original image. Geman and Geman [6] and Jeng and Woods
[7, 8] have constructed a probabilistic model with both intensity field and line field (that
handles edges) by means of the Bayes formula. The probabilistic method was extended to
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forms applicable not only to image restoration but also to edge detection, segmentation, image
compression and motion detection [9, 10]. The practical implementation of probabilistic
models thus constructed from Bayesian statistics involves massive calculations, and the
estimation of the restored image often needs an exponential order of computational complexity
except some special cases. It is useful in this respect to note that the probabilistic models
for image processing can be regarded as classical spin systems with finite-range interactions,
for which approximate methods to treat large-scale problems have been studied for years.
Statistical-mechanical methods are applicable to the above-mentioned estimation of the
restored image in probabilistic models of image processing. In the pioneering works of
Geman and Geman [6] and Jeng and Woods [8], simulated annealing was employed for
this purpose. The mean-field approximation was also applied to image processing by many
computer scientists [16–19]. Both of these methods reduce the computational complexity
from exponential to power behaviour.

Bayesian image analysis is also an interesting subject of investigation in statistics. Some
interpretations of probabilistic models for image processing from the standpoint of statistics
are given in [20]. Besag [21] formulated a framework for a probabilistic computational method
based on Bayesian statistics and proposed a statistical scheme to determine the parameters
in the model, which are called hyperparameters. The detailed mathematical structure of the
his scheme was investigated and extended in some ways by Qian and Titterington [22, 23].
Maximum likelihood estimation is one of the conventional techniques to estimate parameters
or hyperparameters from given data in statistics. The scheme of Besag is based on a maximum
likelihood estimation and was realized as a probabilistic image processing algorithm by
Lakshmanan and Derin [24], Iba [25], Zhang et al [26, 27] and Zhou et al [28]. Pryce and
Bruce [29] and Tanaka [30, 31] investigated a scheme for hyperparameter determination by
using the mean-field approximation from the statistical-mechanical point of view. In these
statistical frameworks, the hyperparameters are determined so as to maximize evidence which
is expressed in terms of the free energy of the probabilistic model.

Recently, several statistical physicists also suggested that some techniques and concepts
in spin glass theory are applicable to the probabilistic computational method, because the
probabilistic models are very similar to classical spin systems, particularly, the Ising model and
Potts model [32]. Nishimori and Wong [33] studied the performance of a probabilistic method
of image restoration by means of an infinite-range Ising model. They applied the replica
method to the calculation. From the standpoint of image processing, the new development in
their research is to show that the performance of the probabilistic computational method can
be given only by the analytical calculation without doing any numerical experiments. In the
conventional statistical method, we have to spend a lot of time doing numerical experiments to
estimate the performance with high accuracy. Inoue and Tanaka [34] calculated the statistical
average of evidence in Bayesian image restoration based on the infinite-range Ising model by
using the replica method and analysed the statistical behaviour in the iteration process of the
algorithms as the maximization of evidence.

This review is composed of two basic topics in the Bayesian approach to image restoration,
and the basic frameworks and techniques are reviewed. The image restoration using the Bayes
formula is a basis of probabilistic image processing and can be extended to other image
processing, for example image segmentation, edge detection, image compression and motion
detection [9, 10]. One topic is binary image restoration and the other one is grey-level image
restoration. In section 2, we demonstrate the basic formulation of the statistical estimation
from the observed data by using the Bayes formula and list the relationship between Bayesian
statistics and statistical mechanics. Particularly, we explain that some correlation inequalities
on the Nishimori line of the random spin model [35–38] also play an important role in Bayesian
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image restoration. In section 3, we review the framework of Bayesian image restoration for
binary images by means of the Ising model and give some practical algorithms by employing
the mean-field and the Bethe approximations [11]. In section 4, we explain Bayesian image
restoration for a grey-level image by using the Gaussian model. The Gaussian model is one
of the solvable models in statistical mechanics and practical algorithms of image restoration
can be derived by means of the exact closed expressions of some statistical quantities of the
Gaussian model. In section 5, we introduce the line state in the Gaussian model to treat the
effects of edges and demonstrate a few results of the numerical experiments for grey-level
image restoration. The line state is extended to quantized values there. Section 6 is devoted
to summaries and conclusions.

2. Bayesian statistics in probabilistic image processing

In this section, we summarize a general framework of image restoration by means of Bayesian
statistics and some properties related to the spin glass theory, particularly, the Nishimori line
in the Ising model with random interactions and random external fields.

Bayesian statistics is based on the Bayes formula. The Bayes formula can often be seen in
elementary textbooks of probability and statistics [12–15]. Let us consider two eventsA and B.
The probability that eventA occurs is denoted by Pr{A}. The conditional probability that event
A occurs when event B occurs is denoted by Pr{A|B}. The joint probability Pr{A,B} for events
A and B is given as follows:

Pr{A,B} = Pr{A|B} Pr{B} = Pr{B|A} Pr{A}. (5)

From this equality, we obtain the Bayes formula

Pr{B|A} = Pr{A|B} Pr{B}
Pr{A} = Pr{A|B} Pr{B}∑

B Pr{A|B} Pr{B} (6)

where
∑

B takes the summation over all the possible events for B. The second equality is given
by using Pr{A} = ∑B Pr{A|B} Pr{B}. The Bayes formula gives the conditional probability
Pr{B|A} when the conditional probability Pr{A|B} and the probability Pr{B} are known. In
equation (6), event A is given as the observed data and event B corresponds to the original
information to estimate. The probability Pr{B} is referred to as the a priori probability. The
conditional probability Pr{A|B} expresses a process generating the data from the original
information. The conditional probability Pr{B|A} is referred to as the a posteriori probability.
Thus the Bayes formula can be applied to the estimation of the original information from the
given data.

In probabilistic image restoration by Bayesian statistics, original and degraded images
are generated by the following procedures:

(i) the original image is generated according to the a priori process;
(ii) the degraded image is generated from the original image obtained through the previous

step in the degradation process.

These procedures are shown in figure 5. These processes can be specified by probabilities
Pr{B} for (i) and Pr{A|B} for (ii) or G for A and F for B in figure 5. The relationship to
construct the inverse process of the process in figure 5 is given by the Bayes formula as a
conditional probability. The inverse process is shown in figure 6. The conditional probability
for the inverse process is referred to as the a posteriori probability in Bayesian statistics.

In the Bayesian approach to image processing, the Markov random field plays an important
role. The Markov random field is the set of random variables in which the state of each pixel is
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Figure 5. Prior and degradation processes generating the original and degraded images,
respectively. The sets of random variables representing the original and the degraded images
are denoted by F = {Fx,y |(x, y) ∈ �} and G = {Gx,y |(x, y) ∈ �}, respectively.

Conditional
Probability 
for Degradation
Pr{ G=g | F=f }

Degraded Image gOriginal Image f

A Priori 
Probability
for
Original Image
Pr{ F=f }

x

A Posteriori Probability Pr{ F=f | G=g }

Figure 6. Inverse process of the process in figure 5.

dependent only on the configuration of its neighbourhood pixels. The two-dimensional Ising
model with nearest-neighbour interactions is a typical example of a Markov random field.
Generally, a Markov random field can be regarded as a two-dimensional classical spin system
with interactions of finite range. Moreover, the conditional probability for the degradation
process can be expressed as a term of external fields in the classical spin system, and the
observed data are represented as the coefficients of the external fields.

Nishimori and Wong [33] proposed that the performance of an infinite-range model of
image restoration can be estimated statistically by introducing an idea from spin glass theory.
Such a viewpoint did not exist in the field of conventional image processing. Computer
scientists and system engineers perform a large number of tests for all the considerable cases
to check the performance of systems they designed consuming large amount of computational
resources. Nishimori and Wong’s proposal suggested that the concepts and techniques in
spin glass theory may provide a performance check without test experiments. Similar ideas
have also been applied to the performance checks in error-correcting codes [39] and mobile
communications [40].

In the present section, we first give a general framework of Bayesian image restoration
and define the Markov random field explicitly by using equations. We explain the equivalence
between the Markov random field and Gibbs canonical distribution, the relationship between
the Kullback–Leibler divergence and the free energy, and the hyperparameter determination
based on the maximum likelihood estimation. Moreover, we give a framework of performance
check in the probabilistic method of image restoration and mention that the framework has a
close formal similarity to the spin glass theory.

2.1. Bayesian image processing

We consider an image on the square lattice� = {(x, y)|x = 1, 2, . . . , Lx, y = 1, 2, . . . , Ly}.
The lattice is assumed to consist of |�| pixels and to satisfy the periodic boundary conditions,
so that the lattice is on a torus. The configurations of true original and given degraded images
are represented by f = {fx,y |(x, y) ∈ �} and g = {gx,y |(x, y) ∈ �}, respectively. In a binary
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f
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g
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Figure 7. Image restoration by means of the Bayes formula. Here α and β are hyperparameters.

image, the set of all possible states at each pixel is denoted by {±1}. The state +1 means black
and the state −1 means white1. In recovering the original image f from the given degraded
image g, we use some a priori properties of the original image f . We express the set of random
variables representing the original and the degraded images by F = {Fx,y |(x, y) ∈ �} and
G = {Gx,y |(x, y) ∈ �}, respectively. In the Bayesian approach to image processing, the set
of random variables is often called the random field.

In the present review, the basic framework of probabilistic image processing is given
by means of the Bayes formula. We have illustrated the concept of the Bayes formula at
the beginning of the present section by using figures 5 and 6. Now we explain the explicit
form of the Bayes formula by means of the notations of the random fields F and G in the
present subsection. The probability that the original image is f , Pr{F = f}, is called the
a priori probability of an original image. In the Bayes formula, the a posteriori probability
Pr{F = f |G = g}, that the original image is f when the given degraded image is g, is
expressed as

Pr {F = f |G = g} = Pr{G = g|F = f}Pr{F = f }∑
z Pr{G = g|F = z}Pr{F = z} (7)

where the summation
∑

z is taken over all possible configurations of images z = {zx,y |(x, y) ∈
�}. The probability Pr{G = g|F = f} is the conditional probability that the degraded image
is g when the original image is f and denotes the degradation process that produces the
degraded image from the original image (see figure 7).

We have some criteria for obtaining the estimate of the original image f , f̂ =
{f̂ x,y |(x, y) ∈ �}, as follows:

(i) Maximum a posteriori (MAP) estimation

f̂ = arg max
z

Pr{F = z|G = g}. (8)

(ii) Maximum posterior marginal (MPM) estimation

f̂ x,y = arg max
ζ

Pr{Fx,y = ζ |G = g}. (9)

(iii) Thresholded posterior mean (TPM) estimation

f̂ x,y = arg min
ζ

(
ζ −

∑
z

zx,y Pr{F = z|G = g}
)2

. (10)

1 In a practical digital image, the set of all possible states at each pixel is denoted by {0, 1, 2, . . . , 255}. The state 0
means black and the state 255 means white.
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Here the notation arg maxza(z) means a maximizer z of the function a(z), and Pr{Fx,y =
ζ |G = g} is the posterior marginal probability defined by

Pr{Fx,y = fx,y |G = g} ≡
∑

z

Pr{F = z|G = g}δzx,y ,fx,y (11)

or

Pr{Fx,y = fx,y |G = g} ≡
∑

f�\(x,y)

Pr{F = f |G = g} (12)

where δa,b is the Kronecker delta. We remark that the MPM estimation and the TPM estimation
are equivalent to each other in binary images.

2.2. Gibbs canonical distributions

For a specified energy function U(f ) and a fixed value of temperature T (>0), the Gibbs
canonical distribution

ρ(f) = exp
(− 1

T
U(f )

)
∑

z exp
(− 1

T
U(z)

) T > 0 (13)

satisfies the minimization of the free energy as follows,

ρ(f) = arg min
φ

F[φ] (14)

where

F[φ] ≡
∑

z

φ(z)

(
U(z) + T

∑
z

ln φ(z)

)
. (15)

Here the notation arg minza(z)means a minimizer z of the function a(z). The quantitiesF[ρ]
andS[ρ] ≡ −∑zρ(z) lnρ(z) are the free energy and the entropy in the statistical-mechanical
model with the energy functionU(f ), respectively. The free energyF[ρ] is expressed in terms
of the energy function U(f ):

F ≡ F[ρ] = −T ln

(∑
z

exp

(
− 1

T
U(z)

))
. (16)

The Kullback–Leibler divergence DKL[φ‖ρ] can be written in terms of F[φ]:

DKL[φ‖ρ] ≡
∑

z

φ(z) ln

(
φ(z)

ρ(z)

)
= F[φ] +

∑
z

exp

(
− 1

T
U(z)

)
. (17)

The Kullback–Leibler divergence DKL[φ‖ρ] is equal to zero if and only if φ(f) = ρ(f).
The minimization of the free energy corresponds to the minimization of the Kullback–Leibler
divergence.

2.3. Markov random fields

In the Bayesian approach to image processing, the random field in the a priori probability is
often assumed to be a Markov random field [4, 5]. A Markov random field is a set of random
variables in which the state of a pixel (x, y) is dependent only on the configuration of its
neighbourhood of the pixel (x, y). In the present paper, for simplicity, we consider only the
set of the nearest-neighbour pixels as the neighbourhood in the Markov random field.

Now we explain the definition of the Markov random field as an explicit expression. The
set of nearest-neighbour pixels of the pixel (x, y) is denoted by cx,y ≡ {(x±1, y), (x, y±1)}.
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In this case, the Markov random field is defined as the set of random variables satisfying the
following relation,

Pr{Fx,y = fx,y |F�\(x,y) = f�\(x,y)} = Pr{Fx,y = fx,y |Fx′,y′ = fx′ ,y′ , (x ′, y ′) ∈ cx,y} (18)

for every pixel (x, y) ∈ �. Here, Pr{Fx,y = fx,y |F�\(x,y) = f�\(x,y)} is defined by

Pr{Fx,y = fx,y |F�\(x,y) = f�\(x,y)} ≡
Pr{F = f}

Pr{F�\(x,y) = f�\(x,y)}
(19)

and F �\(x,y) ≡ {Fx′,y′ |(x ′, y ′) ∈ �\(x, y)}.
It can be shown that the a priori probability with a Markov random field is reduced to

a Gibbs canonical distribution only with finite-range interactions. We can prove this fact as
follows: first we rewrite a probability that satisfies equation (18) in the following form:

Pr{F = f} = exp(−U(f)) U(f) ≡ −ln(Pr{F = f }). (20)

By using equations (18) and (19) iteratively, the energy functionU(f) in equation (20) can be
transformed as follows:

U(f) = −ln(Pr{Fx,y = fx,y |F �\(x,y) = f�\(x,y)})− ln(Pr{F�\(x,y) = f�\(x,y)})
= −ln(Pr{Fx,y = fx,y |Fx′ ,y′ = fx′,y′ , (x ′, y ′) ∈ cx,y})
− ln(Pr{F�\(x,y) = f�\(x,y)})
= −

∑
(x,y)∈�

ln(Pr{Fx,y = fx,y |Fx′,y′ = fx′ ,y′ , (x ′, y ′) ∈ cx,y}). (21)

We then obtain the following equation,

Pr{F = f} = exp


− ∑

(x,y)∈�
Ux,y(fx,y |fx′,y′ , (x ′, y ′) ∈ cx,y)


 (22)

where

Ux,y(fx,y |fx′,y′ , (x ′, y ′) ∈ cx,y) ≡ ln(Pr{Fx,y = fx,y |Fx′,y′ = fx′ ,y′ , (x ′, y ′) ∈ cx,y}). (23)

Equation (22) means that the probability Pr{F = f } that is a Markov random field has the
form of a Gibbs canonical distribution with finite-range interactions.

If the neighbourhood pixels cx,y are specified by

cx,y ≡ {(x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1)} (24)

equation (18) can be written as follows:

Pr{Fx,y = fx,y |F�\(x,y) = f�\(x,y)} = Pr{Fx,y = fx,y |Fx−1,y = fx−1,y , Fx+1,y

= fx+1,y , Fx,y−1 = fx,y−1, Fx,y+1 = fx,y+1}. (25)

More general discussions about the definition of Markov random fields and the equivalence
between the Markov random fields and Gibbs distributions for any lattice with general graph
structure are given in [5].

2.4. Hyperparameter, maximum likelihood estimation and evidence framework

The probabilities Pr{F = f} and Pr{G = g|F = f } have some model parameters that
are referred to as hyperparameters. The hyperparameters of the a priori probability and the
degradation process are denoted by α and β, respectively (see figure 7). Now, we express
the degradation process and the a priori probability including the hyperparameters α and β in
terms of the notations Pr{G = g|F = f , β} and Pr{F = f |α}, respectively.
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We explain the role of the hyperparametersα and β in a simple example. For Lx = 2 and
Ly = 1, we consider a system� consisting of two pixels. The a priori probability distribution
and the degradation process are assumed to be

Pr{F = f |α} = exp(αf1,1f1,2)

4 cosh(α)
(26)

Pr{G = g|F = f , β} = exp(βg1,1f1,1 + βg1,2f1,2)

4 cosh(β) cosh(β)
. (27)

By substituting equations (26) and (27) into equation (7), the a posteriori probability
distribution is derived as follows:

Pr{F = f |G = g, α, β} = exp(βg1,1f1,1 + βg1,2f1,2 + αf1,1f1,2)∑
ζ=±1

∑
ζ ′=±1 exp(βg1,1ζ + βg1,2ζ ′ + αζζ ′)

. (28)

In the MAP estimation, the restored image f̂ = {f̂ 1,1, f̂ 1,2} is given by

(f̂ 1,1, f̂ 1,2) = arg min
ζ=±1,ζ ′=±1

(−βg1,1ζ − βg1,2ζ
′ − αζζ ′). (29)

For α � β, the restored image f̂ satisfies f̂ 1,1 = f̂ 1,2. For α � β, the restored image f̂

is obtained as f̂ 1,1 = g1,1 and f̂ 1,2 = g1,2. Hence, it is important how to choose the values
of hyperparameters which should be determined only from the given degraded image without
using the original image.

By means of the most basic framework of maximum likelihood estimation,we demonstrate
how to estimate the hyperparameters when the original image is not known. Since we never
know the original image f in practical applications, this scheme can be regarded as a design of
optimal probabilistic model of the original image when we know the answer. In this situation,
the hyperparameters α and β are determined so as to maximize quantities Pr{F = f} and
Pr{G = g|F = f} as follows,

(α̂, β̂) = arg max
(α,β)

Pr{F = f ,G = g|α, β} (30)

in the original standpoint of maximum likelihood estimation. In this framework, the joint
probability Pr{F = f ,G = g|α, β} ≡ Pr{G = g|F = f , β} Pr{F = f |α} is regarded as the
likelihood of the hyperparametersα and β when the original image f and the degraded image
g are given. Equation (30) is reduced to the following simultaneous equations:

α̂ = arg max
α

Pr{F = f |α} (31)

β̂ = arg max
β

Pr{G = g|F = f , β}. (32)

This hyperparameter determination scheme was proposed by Besag [21].
By generalizing the above-mentioned hyperparameter estimation method, we explain

how to determine the hyperparameters when we have no direct information on the original
image f . By combining equation (8) with equation (30), Lakshmanan and Derin [24]
implemented the following simultaneous scheme,

(α̂, β̂) = arg max
(α,β)

Pr{F = f̂ ,G = g|α, β} (33)

f̂ = arg max
z

Pr{F = z|G = g, α̂, β̂} (34)

in the context of a segmentation problem. We note that equation (31) gives the scheme to
determine the hyperparameters in the a priori probability from the original image whereas
equations (33) and (34) do not refer to the original image directly.
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Figure 8. Evidence framework of image restoration by means of the Bayes formula.

The framework of Lakshmanan and Derin was extended to more generalized one that is
referred to as a maximization of marginal likelihood [25–29]. In the maximization of marginal
likelihood, the hyperparameters α and β are determined only from a given degraded image
g. From the standpoint of statistics, the hyperparameters α and β are determined so as to
maximize a quantity Pr{G = g|α, β} as follows,

(α̂, β̂) = arg max
(α,β)

Pr{G = g|α, β} (35)

where

Pr{G = g|α, β} ≡
∑

z

Pr{F = z,G = g|α, β} =
∑

z

Pr{G = g|F = z, β} Pr{F = z|α}.

(36)

This situation is shown in figure 8. In this framework, the probability Pr{G = g|α, β} is
given by marginalizing the joint probability Pr{F = f ,G = g|α, β} over all the possible
original images f and can be regarded as a marginal likelihood for α and β when the degraded
image g is given, which is referred to as type II likelihood [41, 42], Akaike–Bayes information
criteria (ABIC) [43] or evidence [29, 44–47] in statistics. Hereafter, Pr{G = g|α, β} will be
referred to as evidence. For example, when we consider the conditional probability Pr{G =
g|F = f , β} in equation (27) and the a priori probability Pr{F = f |α} in equation (26),
the evidence Pr{G = g|α, β} can be written for a binary image as follows:

Pr{G = g|α, β} =
∑

z1,1=±1

∑
z1,2=±1

exp(βg1,1z1,1 + βg1,2z1,2 + αz1,1z1,2))

16 cosh(α) cosh(β) cosh(β)

= exp(α) cosh(βg1,1 + βg1,2) + exp(−α) cosh(βg1,1 − βg1,2)

8 cosh(α) cosh(β) cosh(β)
. (37)

It should be clear now that the hyperparameters α and β can be determined only from
knowledge of the degraded image.

2.5. Configuration average and statistical performance

The probabilistic model for image restoration corresponds to a correlated random field model
with the random external fields g generated by Pr{G = g|α∗, β∗} = ∑z Pr{G = g|F =
z, β∗} Pr{F = z|α∗} from the standpoint of spin glass theory. Here, we remark that the values
of hyperparametersα and β, at which the observed degraded image g has been generated from
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the a priori probability and the degradation process, are denoted by α∗ and β∗ so that α∗ and
β∗ are the true values of the hyperparameters α and β in equation (36), respectively. In spin
glass theory, we consider the random average of quantities A(f) and B(f ,g) defined by

〈A(F )|G = g, α∗, β∗〉 ≡
∑

f

A(f) Pr{F = f |G = g, α∗, β∗} (38)

and

〈B(F ,G)|α∗, β∗〉 ≡
∑

f

∑
g

B(f ,g) Pr{F = f ,G = g|α∗, β∗}. (39)

Here 〈A(F )|G = g, α∗, β∗〉 means the conditional expectation value of A(f) due to the a
posteriori probability Pr{F = f |G = g, α∗, β∗}when the degraded image g and the values of
hyperparameters, α∗ and β∗, are given, and 〈B(F ,G)|α∗, β∗〉 is the conditional expectation
value ofB(f ,g) according to the joint probability Pr{F ,G|α∗, β∗}. F may be identified with
spin variables and G with random fields.

Let us introduce the following quantity as a measure of performance of image restoration,

Mx,y(α, β) ≡
∑

f

∑
g

(fx,y − hx,y(g, α, β))2 Pr{G = g|F = f , α∗, β∗} Pr{F = f |α∗}

= 〈(Fx,y − hx,y(G, α, β))2|α∗, β∗〉 (40)

where hx,y(g, α, β) is the estimation at pixel (x, y) for the original image f by the a posteriori
probability for arbitrary values of hyperparameters α and β. The value of hx,y(g, α, β) has
been obtained from MAP estimation (8), MPM estimation (9), TPM estimation (10) or other
appropriate methods. We have another useful quantity defined by

L(α, β) =
∑

g

ln(Pr{G = g|α, β}) Pr{G = g|α∗, β∗} = 〈ln(Pr{G|α, β})|α∗, β∗〉. (41)

This quantity is the statistical average of the logarithm of evidence Pr{G = g|α, β}with respect
to the degraded image g that is produced by the degradation process Pr{G = g|F = f , β∗}
when the original image f is produced by the a priori probability Pr{F = f |α∗}. For the
statistical quantity L(α, β), we have the following rigorous inequality,

L(α, β) � L(α∗, β∗) (42)

because of

L(α, β)− L(α∗, β∗) =
∑

g

(
ln

(
Pr{G = g|α, β}

Pr{G = g|α∗, β∗}
))

Pr{G = g|α∗, β∗}

� ln

(∑
g

Pr{G = g|α, β}
)
= 0 (43)

due to Jensen’s inequality. This rigorous inequality means that the maximization of log-
evidence can give us the original values of hyperparameters α and β.

If we restrict ourselves to binary images, the MPM estimation (9) and the TPM estimation
(10) are reduced to the same formula,

hx,y(g, α, β) = sign(〈Fx,y |G = g, α, β〉). (44)

In Bayesian statistics, we have to choose an appropriate criterion to determine the estimate of
the original image. Which criterion is best depends on the degradation process. Nishimori
and Wong [33] derived a rigorous inequality

Mx,y(α, β) � Mx,y(α
∗, β∗) (45)
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in the Bayesian approach with the MPM estimation for binary image restoration. By using
|a| = a2/|a| and sign(a) = a/|a| for any non-zero real number, inequality (45) can be proved
as follows:

Mx,y(α, β) = 2− 2〈Fx,y sign(〈Fx,y |G = g, α, β〉)|α∗, β∗〉

� 2− 2
∑

g

∣∣∣∣∣∣
∑

f

fx,y Pr{G = g|F = f , β∗) Pr{F = f |α∗}
∣∣∣∣∣∣

= 2− 2
∑

g


∑

f

fx,y Pr{G = g|F = f , β∗)Px{F = f |α∗)



×
( 〈Fx,y |G = g, α∗, β∗〉
|〈Fx,y |G = g, α∗, β∗〉|

)

= 2− 2
∑

g


∑

f

fx,y Pr{G = g|F = f , β∗)Px{F = f |α∗)



× sign(〈Fx,y |G = g, α∗, β∗〉)
= 2− 2〈Fx,y sign(hx,y (g, α∗, β∗))|α∗, β∗〉
= Mx,y(α

∗, β∗). (46)

The mathematical structure in this inequality is similar to that in the correlation inequalities
at the Nishimori point in the ±J model in spin glass theory [35–38]. Hence, we can regard
the point (α, β) = (α∗, β∗) as corresponding to the Nishimori line in spin glass theory. In
the present review, we sometimes refer to the point (α, β) = (α∗, β∗) as the Nishimori point
in the Bayesian image restoration. The quantityMx,y(α, β) corresponds to a statistical average
with respect to random external fields and random interactions in the spin glass model.

It should be remarked that the probabilistic models for Bayesian image restoration have no
gauge invariance, whereas gauge invariance plays a very important role in the argument related
to the Nishimori line in the ±J model. Nevertheless, we have some correlation inequalities
that can be verified without using the gauge invariance in the±J model. Inequality (45), which
is derived without using the gauge invariance, shows that the best restored image is obtained
at the Nishimori point (α, β) = (α∗, β∗). The relationship between Bayesian statistics and the
Nishimori line in classical spin systems with random interactions and random external fields
was discussed in more detail from the standpoint of probabilistic information processing in
[48–50].

We have demonstrated that the MPM estimation gives us the best restored image.
However, many computer scientists generally use the MAP estimation for data classification
or learning from data by means of Bayes statistics. This standpoint is based on the property
that the image from MAP estimation is the most probable one in the following sense [56].
We denote the random fields of the original image, F , in the a priori probability distribution
Pr{F |α∗} and the a posteriori probability distribution Pr{F |G = g, α∗} by the notation F prior

and F posterior, respectively, and introduce the following probability to understand this fact:

Pr{F prior = F posterior} ≡
∑

f

∑
g

Pr{F posterior = f |G = g, α∗, β∗}

× Pr{G = g|F prior = f , β∗} Pr{F prior = f |α∗}. (47)

We remark that Pr{F prior = F posterior} means the probability of the event ‘F posterior = F prior’
that is, an image generated from the a posteriori probability Pr{F posterior|G = g, α∗, β∗} is
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equal to the original image generated from the a priori probability Pr{F prior|α∗}. The above
statement can be expressed in terms of the following inequality [56],

Pr{F prior = F posterior} � Pr{F prior = f̂
MAP} (48)

where

f̂
MAP ≡ arg max

z
Pr{F posterior = z|G = g, α∗, β∗}

= arg max
z

Pr{G = g|F posterior = z, β∗} Pr{F posterior = z|α∗}. (49)

The proof is given as follows:

Pr{F prior = F posterior} �
∑

f

∑
g

Pr{F posterior = f̂
MAP|G = g, α∗, β∗}

× Pr{G = g|F prior = f , β∗} Pr{F prior = f |α∗}
�
∑

f

∑
g

Pr{F posterior = f̂
MAP|G = g, α∗, β∗}

× Pr{G = g|F prior = f̂
MAP

, β∗} Pr{F prior = f̂
MAP|α∗}

= Pr{F prior = f̂
MAP}. (50)

Inequality (48) suggests that the MAP estimation may give the best restored image in the sense
that it maximizes Pr{F prior = F posterior}. The probability Pr{F prior = F posterior} measures
whether or not the image obtained by the MAP estimation agrees with the original image
at all pixels. The quantity Mx,y(α, β), on the other hand, is a measure of agreement at a
single pixel. Both equations (45) and (48) are mathematically rigorous inequalities. Although
computer scientists often adopt the MAP estimation due to the criterion (48), they should
resort to simulated annealing to implement the MAP estimation because almost no models of
Bayesian image processing have been solved exactly. On the other hand, statistical physicists
have much experience in constructing practical algorithms which can be used to implement
the MPM estimation (9) and the TPM estimation (10) approximately. Moreover, statistical-
mechanical techniques for spin glass theory give us explicit formulae of statistical performance
Mx,y(α, β) for the MPM estimation and the TPM estimation in some types of models. It is
therefore reasonable to consider that the MPM estimation and the TPM estimation are more
practical schemes than the MAP estimation if we combine Bayesian image analysis with
statistical-mechanical techniques.

In the present subsection, we have chosen the quantityD(f̂ ,f) ≡∑(x,y)∈�(f̂ x,y−fx,y )2
as the distance between the restored image f̂ and the original image f . We can ask a slightly
different question: are there any choices for the estimator hx,y(g, α, β) other than the right-
hand side of equation (44) that maximize the average distance 〈D(F ,h(G, α∗, β∗))|α∗, β∗〉?
Iba has answered this question [50]. We demonstrate his careful arguments by limiting
ourselves to the case of binary image restoration with pixel values ±1. First, we introduce
two statistical quantities defined by

〈(Fx,y − hx,y(G, α∗, β∗))2|α∗, β∗〉
≡
∑

f

∑
g

(fx,y − hx,y(g, α∗, β∗))2 Pr{F = f ,G = g|α∗, β∗} (51)

〈(Fx,y − hx,y(g, α∗, β∗))2|G = g, α∗, β∗〉
≡
∑

z

(zx,y − hx,y(g, α∗, β∗))2 Pr{F = z|G = g, α∗, β∗}. (52)
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The following equality for these statistical quantities is valid:

〈(Fx,y − hx,y(G, α∗, β∗))2|α∗, β∗〉
=
∑

f

∑
g

〈(Fx,y − hx,y(g, α∗, β∗))2|G = g, α∗, β∗〉Pr{F = f ,G = g|α∗, β∗}

(53)

The detailed proof is given as follows:∑
f

∑
g

〈(Fx,y − hx,y(g, α∗, β∗))2|G = g, α∗, β∗〉Pr{F = f ,G = g|α∗, β∗}

=
∑

f

∑
g

〈(Fx,y − hx,y(g, α∗, β∗))2|G = g, α∗, β∗〉

× Pr{G = g|F = f , β∗} Pr{F = f |α∗}
=
∑

f

∑
g

∑
z

(zx,y − hx,y(g, α∗, β∗))2 Pr{F = z|G = g, α∗, β∗}

× Pr{G = g|F = f , β∗} Pr{F = f |α∗}
=
∑

f

∑
g

∑
z

(zx,y − hx,y(g, α∗, β∗))2

×
(

Pr{G = g|F = z, β∗} Pr{F = z|α∗}∑
z′ Pr{G = g|F = z′, β∗} Pr{F = z′|α∗}

)
× Pr{G = g|F = f , β∗} Pr{F = f |α∗}
=
∑

g

∑
z

(zx,y − hx,y(g, α∗, β∗))2

×
(

Pr{G = g|F = z, β∗} Pr{F = z|α∗}∑
z′ Pr{G = g|F = z′, β∗} Pr{F = z′|α∗}

)

×
∑

f

Pr{G = g|F = f , β∗} Pr{F = f |α∗}

=
∑

f

∑
g

(fx,y − hx,y(g, α∗, β∗))2 Pr{G = g|F = f , β∗} Pr{F = f |α∗}

= 〈(Fx,y − hx,y(G, α∗, β∗))2|α∗, β∗〉. (54)

If |hx,y(g, α, β)| = 1, the first factor on the right-hand side of equation (53) can be rewritten
as follows:

〈(Fx,y − hx,y(g, α∗, β∗))2|G = g, α∗, β∗〉
=
∑

z

(zx,y − hx,y(g, α∗, β∗))2 Pr{F = z|G = g, α∗, β∗}

= 2− 2hx,y(g, α
∗, β∗)〈Fx,y |G = g, α∗, β∗〉. (55)

If we want to determine the optimal estimator hx,y(g, α∗, β∗) so as to minimize the quantity
〈(Fx,y − hx,y(g, α∗, β∗))2|G = g, α∗, β∗〉, the optimal estimator hx,y(g, α∗, β∗) should be
given as follows,

hx,y(g, α
∗, β∗) =

{
+1 〈Fx,y |G = g, α∗, β∗〉 � 0

−1 〈Fx,y |G = g, α∗, β∗〉 � 0
(56)

so that

hx,y(g, α
∗, β∗) = sign(〈Fx,y |G = g, α∗, β∗〉). (57)
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This is a justification for the statement that hx,y(g, α∗, β∗) in equation (44) is the unique
choice to minimize the statistical quantity 〈D(F ,h(G, α∗, β∗))|α∗, β∗〉. Iba has proved the
statement in the more general case and has pointed out that this property is one of the important
aspects of the Nishimori line for probabilistic models [50]. The point is that gauge invariance,
which plays an important role in the original argument of Nishimori [48, 49], did not show up
here.

Before closing this subsection, we give another interesting aspect of the statistical
performance of the MAP estimation, the MPM estimation and the TPM estimation from
the statistical-mechanical point of view. Let us introduce a new probability defined by

ρ(f |G, α, β, T ) ≡ exp
(− 1

T
H(f |g, α, β))∑

z exp
(− 1

T
H(z|g, α, β)) (58)

where

H(f |g, α, β) ≡ −ln(Pr{F = f |G = g, α, β}) (59)

and Pr{F = f |G = g, α, β} is the a posteriori probability. We denote the restored image f̂

obtained by means of the MAP estimation (8) by the notation f̂
MAP

. For any positive value of

T, the same restored image f̂
MAP

is given in terms of the probability ρ(f |g, α, β, T ) by the
following prescription:

f̂
MAP = arg max

f
ρ(f |g, α, β, T ). (60)

For the probability ρ(f |g, α, β), we define the marginal probability for fx,y :

ρx,y(fx,y |g, α∗, β∗, T ) ≡
∑

f�\(x,y)

ρ(f |g, α∗, β∗). (61)

Between the a posteriori probability Pr{F = f |G = g, α, β}, the new probability ρ(f |g,
α, β) and their marginal probabilities, we have the following four relationships:

ρ(f |g, α, β, 1) = Pr{F = f |G = g, α, β} (62)

ρx,y(fx,y |g, α, β, 1) = Pr{Fx,y = fx,y |G = g, α, β}. (63)

If the MAP estimation (8) has a unique solution, the following relationship should also be
valid

lim
T→+0

ρ(f |g, α∗, β∗, T ) =
∏

(x,y)∈�
δ
fx,y ,f̂

MAP
x,y

(64)

and then we have

lim
T→+0

ρx,y(fx,y |g, α∗, β∗, T ) = δfx,y ,f̂MAP
x,y

. (65)

Equation (65) means that we obtain the restored image f̂
MAP

in the MAP estimation by using
the marginal probability ρx,y(fx,y |g, α∗, β∗, T ) in the limit T → +0.

Now, we restrict ourselves to binary image restoration and consider the inequality (48)
again. Instead of Mx,y(α, β), we introduce the following configuration average,

M̃x,y(α, β, T ) =
∑

f

∑
g

(fx,y − h̃x,y(g, α, β, T ))2 Pr{G = g|F = f , α∗, β∗} Pr{F = f |α∗}

= 〈(Fx,y − h̃x,y (G, α, β, T ))2|α∗, β∗〉 (66)
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where

h̃x,y (g, α, β, T ) ≡ sign

(∑
z

zx,yρ(z|g, α, β, T )
)
. (67)

Because we have hx,y(g, α, β) = h̃x,y(g, α, β, 1), it follows that M̃x,y(α, β, 1) =Mx,y (α, β)

is valid. In a similar argument to the proof of equation (48), we can show that

M̃x,y(α, β, T ) � Mx,y(α
∗, β∗). (68)

Inequality (68) means that if we restrict ourselves to binary image restoration and if the MAP

estimation gives a unique solution f̂
MAP

, the MPM estimation can give us a better restored
image than the MAP estimation. It must be remembered that the above statement is valid
only in the case of binary image restoration. Another important point is that it is generally
difficult to prove uniqueness of the minimum configuration that validates equation (64).
Without solving this problem, we cannot reach the final answer to the question of the best
method among the MAP, MPM or TPM estimates.

2.6. Baysian image restoration and infinite-range Ising model

Some statistical physicists may note that, if the a priori probability is assumed to be the infinite-
range Ising model, the configuration average Mx,y (α, β) = 〈(Fx,y − hx,y(G, α, β))2|α∗, β∗〉
by the joint probability Pr{F = f ,G = g|α∗, β∗} can be calculated analytically with the
help of the replica method. Actually, such pioneering work has been done by Nishimori and
Wong [33]. They calculated the statistical difference Mx,y (α, β) using the replica method
under the assumption that the a priori probability is a spin- 1

2 Ising model with infinite-range
interactions defined by

Pr{F = f} = Pr{F = f |α} ≡
exp

(
− 1

2|�|α
∑

(x,y)∈�
∑

(x′,y′)∈�(fx,y − fx′,y′)2
)

∑
z exp

(
− 1

2|�|α
∑

(x,y)∈�
∑

(x′,y′)∈�(zx,y − zx′,y′ )2
) (69)

and the degradation process is assumed to be given by the following conditional probability

Pr{G = g|F = f} = Pr{G = g|F = f , σ } ≡
(
β

2π

) |�|
2

exp


−β

2

∑
(x,y)∈�

(fx,y − gx,y )2



(70)

where fx,y = ±1 and gx,y takes any real number. By substituting equations (69) and (70) into
equation (40) and using the replica method, we obtain the configuration average M(α, β) in
the thermodynamic limit |�|→+∞:

M(α, β) = lim
|�|→+∞

1

|�|
∑

(x,y)∈�
Mx,y(α, β)

= 2− 1

cosh(α∗m0)

∑
ζ=±1

1√
2π

∫ +∞

−∞
exp

(
−u

2
+ α∗m0ζ

)

× ζ sign

(
αm + βζ +

β√
β∗
u

)
du (71)

wherem0 and m are determined from the following simultaneous equations:

m0 = tanh(α∗m0) (72)
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Figure 9. T-dependence of M( α
∗
T
,
β∗
T
) obtained from equations (71)–(73). The value M( α

∗
T
,
β∗
T
)

at T = 1 corresponds to that at the Nishimori point and is the minimum value of M( α
∗
T
,
β∗
T
) with

respect to T. This figure has been drawn using the program written by Professor J Inoue of the
Graduate School of Engineering, Hokkaido University.

m = 1

2 cosh(α∗m0)

∑
ζ=±1

1√
2π

∫ +∞

−∞
exp

(
−u

2
+ α∗m0ζ

)
tanh

(
αm + βζ +

β√
β∗
u

)
du. (73)

The detailed derivation is given in [32, 33] which we omit in the present review. For the a
priori probability (69) and the degradation process (70), the quantity M̃(α, β, T ) defined by
equation (66) can be expressed in terms of M(α, β) as follows:

M̃(α, β, T ) =M
(
α

T
,
β

T

)
. (74)

As mentioned in section 2.5, M(α∗, β∗) = M̃(α∗, β∗, 1) means the statistical distance
between the original image f and the corresponding restored image f̂ = h(g, α∗, β∗) given
in equation (44) at the Nishimori point (α, β) = (α∗, β∗). Moreover, if the MAP estimation
(8) has a unique solution, M(

α∗
T
,
β∗
T

) = M̃(α∗, β∗, T ) converges to the statistical distance

between the original image f and the corresponding MAP restored image f̂
MAP

defined by
equation (8) in the limit T → +0. Now, we show the T-dependence of M(

α∗
T
,
β∗
T

)
obtained

from equations (71)–(73) in figure 9. It is seen that M(
α∗
T
,
β∗
T

)
takes the minimum value

M(α∗, β∗) at T = 1 and

lim
T→+0

M
(
α∗

T
,
β∗

T

)
>M(α∗, β∗). (75)

We remark again that limT→+0M
(
α∗
T
,
β∗
T

)
corresponds to the statistical distance for the MAP

estimation if the MAP estimation (8) has a unique solution. This result suggests that the MPM
estimation and the TPM estimation give better restored images than the MAP estimation in
binary image restoration.

With the same assumption on the a priori probability and the degradation process,
Inoue and Tanaka [34] investigated the statistical behaviour of the hyperparameter estimation
in evidence framework using the replica method. The analytical calculations of the
statistical average M(α, β) give us the performance of the system for Bayesian image
restoration without heavy numerical experiments. Some statistical physicists investigated
the statistical performance of classical and quantum spin systems constructed for the image
restoration by using the replica method [51–55]. For practical applications in binary
image restoration, we have to investigate the statistical performance of systems where the
a priori probability is assumed to be the two-dimensional Ising model with nearest-neighbour
interactions.
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2.7. Summary

In this section, we have explained the general framework of image restoration by means
of Bayesian statistics. Using the Bayes formula under the assumption that the a priori
probability is a Markov random field, the a posteriori probability is expressed in terms of
the Gibbs canonical distribution. The latter distribution satisfies the minimization condition
of the free energy, which corresponds to the Kullback–Leibler divergence in information
theory. In statistics, hyperparameters in the a posteriori probability are determined so as to
maximize the evidence which is expressed in terms of the free energy of the a posteriori
probability. The statistical averages of the evidence and the overlap between original image
and the corresponding restored image give us the statistical performance of probabilistic image
processing systems analytically. The statistical average corresponds to the random average
in the spin glass theory. Thus, we see that the probabilistic image processing by Bayesian
statistics is closely related to statistical mechanics. In the next section, we clarify a close
relationship between probabilistic image processing and statistical mechanics by introducing
the framework of the Bayesian approach to binary image restoration.

3. The Bayesian approach to binary image restoration

In this section, we explain the Bayesian approach to binary image restoration in more detail.
We clarify a relationship between probabilistic image processing and statistical mechanics
through the framework of Bayesian statistics.

By denoting the white state and the black state at each pixel by −1 and +1, the Ising
model with nearest-neighbour interactions and non-uniform external fields on a finite-size
square lattice can be associated with binary image restoration. Then, the external field at each
pixel corresponds to the degree of degradation of the given degraded image. The nearest-
neighbour interactions represent the a priori knowledge for the original image.

In order to obtain the restored image by means of the a posteriori probability, we have to
look for the most probable configuration in the MAP estimation or calculate the average of the
random variable at each pixel in the MPM estimation. The most probable configuration and
the average of the random variable at each pixel in the a posteriori probability correspond to
the ground state configuration and the magnetization of each lattice site, respectively, in the
corresponding Ising model. Usually, any image consists of at least a few hundred thousand
pixels and each pixel has two possible states, white and black, in the binary image. Therefore,
it is hard to obtain the most probable configuration and the magnetization at each lattice site of
the corresponding Ising model since it needs unusually long computation. In order to proceed
further, computer scientists did not follow the path to obtain the exact solution for some
problems with such computational complexity but instead proposed ingenious methods to
obtain approximate solutions with high accuracy. Statistical mechanics has been an important
source of techniques for calculating the magnetization and the other statistical quantities
for massive probabilistic models including the Ising model, although its main purpose is to
investigate critical phenomena in the thermodynamic limit. Clearly, these techniques can be
applied to the calculations of the most probable configuration and the magnetization at each
lattice site for the Ising model constructed for the purpose of binary image restoration.

In this section, we explain some image restoration algorithms constructed using the
mean-field and Bethe approximations [11], both of which are familiar to us in statistical
mechanics. In the mean-field and Bethe approximations, the probability distribution of the
massive probabilistic model is approximately expressed in a factorizable form of one-body or
two-body distributions that are referred to as marginal probability distributions in probability
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theory and statistics. The one-body and two-body distributions are determined so as to
minimize an approximate free energy. The mean-field approximation treats only one-body
distributions and the Bethe approximation also treats two-body distributions for the nearest-
neighbour pairs of lattice sites. The Bethe approximation takes account of the fluctuations
of the nearest-neighbour pairs of lattice sites, whereas the mean-field approximation ignores
such fluctuations. In the present section, we give two approximate schemes for determining
the hyperparameter by applying the mean-field and Bethe approximations to the evidence
framework.

3.1. Bayes formula and evidence framework

All possible states at each pixel (x, y) in the original image f and the degraded image g are
restricted to {±1}. A degradation process Pr{G = g|F = f} and an a priori probability
distribution Pr{F = f} are assumed to be as follows.

3.1.1. Degradation process in binary images. We have a given degraded image g which is
obtained from the original image f by changing the state of each pixel to another state by the
same probability p = 1

1+exp(2β) , independently of the other pixels. Here p is assumed to be less

than 1
2 so that β is always positive. The conditional probability distribution Pr{G = g|F = f}

is given by

Pr{G = g|F = f} = Pr{G = g|F = f , β} ≡
exp

(
− 1

2β
∑

(x,y)∈�(fx,y − gx,y )2
)

(1 + exp(−2β))|�|
. (76)

The summation
∑

(x,y)∈� and the product
∏
(x,y)∈� are taken over all the pixels (x, y).

3.1.2. A priori probability distribution in binary images. The a priori probability distribution,
that the original image is f , is given by

Pr{F = f} = Pr{F = f |α} ≡
exp

(
− 1

2 α
∑

(x,y)∈�((fx,y − fx+1,y )
2 + (fx,y − fx,y+1)

2)
)

∑
z exp

(
− 1

2 α
∑

(x,y)∈�((zx,y − zx+1,y)2 + (zx,y − zx,y+1)2)
) .

(77)

The summation is defined by∑
z

≡
∏

(x,y)∈�

∑
zx,y=±1

. (78)

By substituting equations (76) and (77) into equation (7), the a posteriori probability
distribution is given as

Pr{F = f |G = g} = Pr{F = f |G = g, α, β} = exp(−E(f |g, α, β))∑
z exp(−E(z|g, α, β)) (79)

where

E(f |g, α, β) ≡ 1

2
β
∑

(x,y)∈�
(fx,y − gx,y )2 +

1

2
α
∑

(x,y)∈�
((fx,y − fx+1,y )

2 + (fx,y − fx,y+1)
2).

(80)

The a posteriori probability distribution can be rewritten into a spin- 1
2 Ising model with

nearest-neighbour interactions and non-uniform external fields on a square lattice as follows:

Pr{F = f |G = g, α, β} = exp(−H(f |g, α, β))∑
z exp(−H(z|g, α, β)) (81)
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where

H(f |g, α, β) ≡ −β
∑

(x,y)∈�
gx,yfx,y − α

∑
(x,y)∈�

(fx,yfx+1,y + fx,yfx,y+1). (82)

In the framework of binary image restoration given in equations (79), the hyperparameters
α and β are determined by

(α̂, β̂) = arg max
(α,β)

Pr{G = g|α, β}. (83)

The logarithm of evidence Pr{G = g|α, β} can be rewritten as follows:

−ln( Pr{G = g|α, β}) = −ln

(∑
z

exp (−E(z|g, α, β))
)

+ ln

(∑
z

exp (−E(z|g, α, β = 0))

)
+ |�| ln(1 + exp(−2β))

= −ln

(∑
z

exp (−H(z|g, α, β))
)

+ ln

(∑
z

exp (−H(z|g, α, β = 0))

)
+ |�| ln(2 cosh(β)). (84)

We remark that the first and second terms on the right-hand side correspond to the free energies
of the statistical-mechanical models with energy functionsE(z|g, α, β) andE(z|g, α, β = 0),
respectively. By differentiating the right-hand side of equation (84) with respect to β and α,
we can derive the extremum condition of the logarithm of evidence as follows,∑

(x,y)∈�

∑
z

gx,yzx,y Pr{F = z|G = g, α, β} = tanh(β) (85)

and∑
(x,y)∈�

∑
z

(zx,yzx+1,y + zx,yzx,y+1) Pr{F = z|G = g, α, β}

=
∑

(x,y)∈�

∑
z

(zx,yzx+1,y + zx,yzx,y+1) Pr{F = z|α}. (86)

Now, we introduce the three marginal probability distributions ρx,y(ζ |g, α, β),
ρ
x+1,y
x,y (ζ, ζ ′|g, α, β) and ρx,y+1

x,y (ζ, ζ ′|g, α, β):

ρx,y(ζ |g, α, β) ≡
∑

z

ρ(z|G = g, α, β)δzx,y ,ζ ζ = ±1 (87)

ρx+1,y
x,y (ζ, ζ ′|g, α, β) ≡

∑
z

ρ(z|G = g, α, β)δzx,y ,ζ δzx+1,y ,ζ
′ ζ, ζ ′ = ±1 (88)

ρx,y+1
x,y (ζ, ζ ′|g, α, β) ≡

∑
z

ρ(z|G = g, α, β)δzx,y ,ζ δzx,y+1,ζ ′ ζ, ζ ′ = ±1. (89)

By substituting equations (87)–(89) into equations (86) and (85), we can rewrite the extremum
condition of the logarithm of evidence as follows:∑
(x,y)∈�

∑
ζ=±1

gx,yζρx,y(ζ |g, α, β) = tanh(β) (90)
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∑
(x,y)∈�

∑
ζ=±1

∑
ζ ′=±1

ζ ζ ′
(
ρx+1,y
x,y (ζ, ζ ′|g, α, β) + ρx,y+1

x,y (ζ, ζ ′|g, α, β))
=

∑
(x,y)∈�

∑
ζ=±1

∑
ζ ′=±1

ζ ζ ′
(
ρx+1,y
x,y (ζ, ζ ′|g, α, β = 0) + ρx,y+1

x,y (ζ, ζ ′|g, α, β = 0)
)
.

(91)

From these equations, we see that the marginal probability distributions ρx,y(ζ |g, α, β),
ρ
x+1,y
x,y (ζ, ζ ′|g, α, β) and ρ

x,y+1
x,y (ζ, ζ ′|g, α, β) have to be calculated for any values of α

and β, numerically. However, it is hard to calculate the marginal probability distributions
ρx,y(ζ |g, α, β), ρ

x+1,y
x,y (ζ, ζ ′|g, α, β) and ρ

x,y+1
x,y (ζ, ζ ′|g, α, β), exactly, in terms of the

definitions (87)–(89). As a key to calculating the marginal probability distributions,
we explain the mean-field and Bethe approximations for the energy function (80) in
sections 3.2 and 3.3.

3.2. Mean-field approximation

In this subsection, we derive the deterministic equations of the MPM estimate and the
hyperparameter estimation in the mean-field approximation for the Markov random field
model based on the variational principle of the free energy with respect to marginal probability
distributions [17].

In the mean-field approximation, the probability distribution ρ(f |g, α, β) is
approximately expressed in terms of the marginal probability distributions

ρ(f |g, α, β) 
∏

(x,y)∈�
ρx,y(fx,y |g, α, β). (92)

By using equation (92), the approximate form of the free energyF[ρ] ≡∑z ρ(z|g)(H(z|g) +
lnρ(z|g)) for T = 1 can be written as

F[ρ]  FMF[{ρx,y}] ≡
∑

(x,y)∈�

∑
ζ=±1

ρx,y(ζ |g, α, β)
(
−βgx,yζ − α

∑
ζ ′=±1

ζ ζ ′ρx+1,y (ζ
′|g, α, β)

− α
∑
ζ ′=±1

ζ ζ ′ρx,y+1(ζ
′|g, α, β) + ln ρx,y(ζ |g, α, β)

)
. (93)

We note that the marginal probability distribution should satisfy the following normalization
condition: ∑

ζ=±1

ρx,y(ζ |g, α, β) = 1. (94)

To ensure the normalization condition, we introduce the Lagrange multiplier νx,y :

LMF[{ρx,y}] = FMF[{ρx,y}] +
∑

(x,y)∈�
νx,y

(∑
ζ=±1

ρx,y(ζ |g, α, β)− 1

)
. (95)

By taking the first variation of LMF[{ρx,y}] with respect to ρx,y(ξ),

∂

∂ρx,y(ξ)
LMF[{ρx,y}] = 0 ξ = ±1 (96)

we derive the following extremum condition:

ρx,y(ξ |g, α, β) = exp


−1− νx,y + βgx,yξ + αξ

∑
ζ=±1

ζ
∑

(x′,y′)∈cx,y

ρx′,y′(ζ |g, α, β)

. (97)
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Here cx,y is the set of neighbouring pixels of the pixel (x, y):

cx,y ≡ {(x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1)}. (98)

We can summarize the simultaneous deterministic equations with respect to the marginal
probability distributions ρx,y(ξ |g, α, β) as follows,

ρx,y(ξ |g, α, β) = exp(−H(ξ |g, α, β))∑
ζ=±1 exp(−H(ζ |g, α, β)) ζ = ±1 (99)

where

Hx,y(ξ |g, α, β) ≡ −βgx,yξ − αξ
∑
ζ=±1

ζ
∑

(x′,y′)∈cx,y

ρx′,y′(ζ |g, α, β). (100)

The marginal probability distribution ρx,y(ξ |g, α, β) can be expressed in the orthogonal
series as

ρx,y(ζ |g, α, β) = 1
2 (1 +mx,y(g, α, β)ζ ) (101)

where

mx,y(g, α, β) ≡
∑
ζ=±1

ζρx,y (ζ |g, α, β). (102)

By substituting equation (101) into equations (99) and (100), the simultaneous deterministic
equations with respect to the marginal probability distributionsρx,y(ξ |g, α, β) can be rewritten
as the equations for the moments mx,y(g, α, β):

mx,y(g, α, β) = tanh


βgx,y + α

∑
(x′,y′)∈cx,y

mx′,y′(g, α, β)


. (103)

The approximate form of the evidence in the mean-field approximation is given as follows:

ln( Pr{G = g|α, β}) = −F(g, α, β) + F(g, α, β = 0) + |�| ln(exp(β) + exp(−β))

 −
∑

(x,y)∈�


−β ∑

ζ=±1

gx,yζρx,y(ζ |g, α, β)− α
∑
ζ=±1

∑
ζ ′=±1

ζ ζ ′ρx,y(ζ |g, α, β)

× (ρx+1,y(ζ
′|g, α, β) + ρx,y+1(ζ

′|g, α, β))

+
∑
ζ=±1

ρx,y(ζ |g, α, β) lnρx,y(ζ |g, α, β)



+
∑

(x,y)∈�


−α ∑

ζ=±1

∑
ζ ′=±1

ζ ζ ′ρx,y(ζ |g, α, β,= 0)(ρx+1,y(ζ
′|g, α, β = 0)

+ ρx,y+1(ζ
′|g, α, β = 0)) +

∑
ζ=±1

ρx,y(ζ |g, α, β = 0) lnρx,y(ζ |g, α, β = 0)




+ |�| ln(2 cosh(β)). (104)

Since the marginal probability distributions ρx+1,y
x,y (ζ, ζ ′|g, α, β) and ρx,y+1

x,y (ζ, ζ ′|g, α, β) are
approximately expressed in terms of the marginal probability distributions ρx,y(ζ |g, α, β),
ρx+1,y(ζ |g, α, β) and ρx,y+1(ζ |g, α, β) as follows,

ρx+1,y
x,y (ζ, ζ ′|g, α, β)  ρx,y(ζ |g, α, β)ρx+1,y (ζ

′|g, α, β) (105)
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and

ρx,y+1
x,y (ζ, ζ ′|g, α, β)  ρx,y(ζ |g, α, β)ρx,y+1(ζ

′|g, α, β) (106)

the extremum conditions (90) and (91) can be approximately written as∑
(x,y)∈�

gx,ymx,y(g, α, β) = tanh(β) (107)

∑
(x,y)∈�

mx,y(g, α, β)(mx+1,y(g, α, β) +mx,y+1(g, α, β))

=
∑

(x,y)∈�
mx,y(g, α, β = 0)(mx+1,y(g, α, β = 0) +mx,y+1(g, α, β = 0)). (108)

In the case of β = 0, since both the energy function H(f |g, α, β = 0) and the moment
mx,y(g, α, β = 0) are independent of the degraded image g, the moment mx,y(g, α, β) is not
dependent on the site (x, y) and can be replaced by a notationm(α):

mx,y(g, α, β = 0) = m(α) (x, y) ∈ �. (109)

The mean-field equation (103) can then be reduced to

m(α) = tanh(4αm(α)). (110)

By using this equation, the deterministic equations (107) and (108) are rewritten as

β = arctanh


 ∑
(x,y)∈�

gx,ymx,y(g, α, β)


 (111)

α = 1

4m(α)
arctanh



√√√√1

2

∑
(x,y)∈�

mx,y(g, α, β)(mx+1,y(g, α, β) +mx,y+1(g, α, β))


. (112)

3.3. Bethe approximation

In this subsection, we derive the deterministic equations of the Bethe approximation for the
Markov random field model based on the variational principle of the free energy with respect
to marginal probability distributions [30, 31, 57].

In the Bethe approximation, the entropy S ≡ −∑z ρ(z|g) lnρ(z|g) is approximately
expressed in terms of the marginal probability distributions ρx,y(ζ |g, α, β),
ρ
x+1,y
x,y (ζ, ζ ′|g, α, β) and ρx,y+1

x,y (ζ, ζ ′|g, α, β) as follows,

S[ρ] 
∑

(x,y)∈�
S[ρx,y] +

∑
(x,y)∈�

(S [ρx+1,y
x,y

]− S[ρx,y ]− S[ρx+1,y ]
)

+
∑

(x,y)∈�

(S [ρx,y+1
x,y

]− S[ρx,y ]− S[ρx,y+1]
)

= −3
∑

(x,y)∈�
S[ρx,y ] +

∑
(x,y)∈�

S [ρx+1,y
x,y

]
+
∑

(x,y)∈�
S [ρx,y+1

x,y

]
(113)

where

S [ρx+1,y
x,y

] ≡ −∑
ζ=±1

∑
ζ ′=±1

ρx+1,y
x,y (ζ, ζ ′|g, α, β) lnρx+1,y

x,y (ζ, ζ ′|g, α, β) (114)
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and

S [ρx,y+1
x,y

] ≡ −∑
ζ=±1

∑
ζ ′=±1

ρx,y+1
x,y (ζ, ζ ′|g, α, β) lnρx,y+1

x,y (ζ, ζ ′|g, α, β). (115)

Now we explain the above approximate form of the entropy in the Bethe approximation.
All the random variables of a probability distribution P(f ) are independent of each other and
the entropy S ≡ −∑zP(z) ln(P (z)) is expressed as

S =
∑

(x,y)∈�
Sx,y (116)

where Sx,y is defined for a pixel (x, y) by

Sx,y ≡ −
∑
ζ=±1

Px,y(ζ ) lnPx,y(ζ ) (117)

Px,y(ζ ) ≡
∑

z

P(z)δzx,y ,ζ ζ = ±1. (118)

If we have an interaction between the nearest-neighbour pairs of pixels (x1, y1) and (x1 +1, y1)

and the other pixels are independent of each other in a probability distributionP(f), the entropy
is written as,

S =
∑

(x,y)∈�\{(x1,y1),(x1+1,y1)}
Sx,y + Sx1+1,y1

x1,y1
=

∑
(x,y)∈�

Sx,y +
(
Sx1+1,y1
x1,y1

− Sx1,y1 − Sx1+1,y1

)
(119)

where Sx
′,y′
x,y is defined for pairs of pixels (x, y) and (x ′, y ′) by

Sx
′,y′
x,y ≡ −

∑
ζ=±1

∑
ζ ′=±1

Px
′,y′

x,y (ζ, ζ
′) lnPx

′,y′
x,y (ζ, ζ

′) (120)

Px
′,y′

x,y (ζ, ζ
′) ≡

∑
z

P(z)δzx,y ,ζ δzx′,y′ ,ζ ′ ζ, ζ ′ = ±1. (121)

If we have an interaction between the nearest-neighbour pairs of pixels (x1, y1), (x1 + 1, y1),
(x1 +1, y1 +1) and (x1, y1 +1) and the other pixels are independent of each other in a probability
distribution P(f ), the entropy is written as

S =
∑

(x,y)∈�\{(x1,y1),(x1+1,y1),(x1+1,y1+1),(x1,y1+1)}
Sx,y + S(4)x1,y1

=
∑

(x,y)∈�
Sx,y +

(
Sx1+1,y1
x1,y1

− Sx1,y1 − Sx1+1,y1

)
+
(
S
x1+1,y1+1
x1+1,y1

− Sx1+1,y1 − Sx1+1,y1+1

)

+
(
S
x1+1,y1+1
x1,y1+1 − Sx1,y1+1 − Sx1+1,y1+1

)
+
(
Sx1,y1+1
x1,y1

− Sx1,y1 − Sx1,y1+1
)

+
(
S(4)x1,y1

− Sx1,y1+1
x1,y1

− Sx1+1,y1+1
x1,y1+1 − Sx1+1,y1+1

x1+1,y1
− Sx1+1,y1

x1,y1

+ 2Sx1,y1 + 2Sx1,y1+1 + 2Sx1+1,y1+1 + 2Sx1+1,y1

)
(122)

where S(4)x1,y1
is defined for a square plaquette {(x1, y1), (x1 +1, y1), (x1 +1, y1 +1), (x1, y1 +1)}

by

S(4)x,y ≡ −
∑
ζ=±1

∑
ζ ′=±1

∑
ζ ′′=±1

∑
ζ ′′′=±1

P (4)x,y (ζ, ζ
′, ζ ′′, ζ ′′′) lnP (4)x,y (ζ, ζ

′, ζ ′′, ζ ′′′) (123)

P (4)x,y (ζ, ζ
′, ζ ′′, ζ ′′′) ≡

∑
z

P(z)δzx,y ,ζ δzx+1,y ,ζ ′δzx+1,y+1,ζ ′′δzx,y+1,ζ ′′′ ζ, ζ ′, ζ ′′, ζ ′′′ = ±1. (124)
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If we have interactions between all the nearest-neighbour pairs of pixels, the entropy can be
represented as follows,

S =
∑

(x,y)∈�
Sx,y +

∑
(x,y)∈�

(
Sx+1,y
x,y − Sx,y − Sx+1,y

)
+
∑

(x,y)∈�

(
Sx,y+1
x,y − Sx,y − Sx,y+1

)
+ S̄ (125)

where S̄ is a correction term including
∑

(x,y)∈�S
(4)
x,y and the other entropies for many-body

marginal probability distributions. In the Bethe approximation, we set S̄ = 0 in equation (125).
This is the physical meaning of equation (113). Setting S̄ = 0 in equation (125) corresponds
to the assumption that the probability distribution P(f ) is approximately expressed in the
following factorizable form:

P(f ) 

 ∏
(x,y)∈�

Px,y(fx,y )




 ∏
(x,y)∈�

P
x+1,y
x,y (fx,y , fx+1,y )

Px,y (fx,y )Px+1,y (fx+1,y)




×

 ∏
(x,y)∈�

P
x,y+1
x,y (fx,y , fx,y+1)

Px,y (fx,y )Px,y+1(fx,y+1)


. (126)

By substituting equation (113) into the expression of the free energy F[ρ] ≡∑
zρ(z|g)(H(z|g) + ln ρ(z|g)) for T = 1, we obtain the approximate form of the free

energy FBethe
[{
ρx,y, ρ

x+1,y
x,y , ρ

x,y+1
x,y

}]
as

F[ρ]  FBethe
[{
ρx,y , ρ

x+1,y
x,y , ρx,y+1

x,y

}]
≡ −

∑
(x,y)∈�

∑
ζ=±1

(
βgx,yζρx,y(ζ |g, α, β)

+αζζ ′ρx+1,y
x,y (ζ, ζ ′|g, α, β) + αζζ ′ρx,y+1

x,y (ζ, ζ ′|g, α, β))
− 3

∑
(x,y)∈�

∑
ζ=±1

ρx,y(ζ |g, α, β) lnρx,y(ζ |g, α, β)

+
∑

(x,y)∈�

∑
ζ=±1

∑
ζ ′=±1

ρx+1,y
x,y (ζ, ζ ′|g, α, β) ln ρx+1,y

x,y (ζ, ζ ′|g, α, β)

+
∑

(x,y)∈�

∑
ζ=±1

∑
ζ ′=±1

ρx,y+1
x,y (ζ, ζ ′|g, α, β) ln ρx,y+1

x,y (ζ, ζ ′|g, α, β). (127)

The marginal probability distributionsρx,y(ζ |g, α, β), ρx+1,y
x,y (ζ, ζ ′|g, α, β) andρx,y+1

x,y (ζ, ζ ′|g,
α, β) satisfy the normalization conditions,∑

ζ=±1

ρx,y(ζ |g, α, β) =
∑
ζ=±1

∑
ξ=±1

ρx+1,y
x,y (ξ, ζ |g, α, β)

=
∑
ζ=±1

∑
ξ=±1

ρ
x,y

x−1,y (ζ, ξ |g, α, β) = 1 (128)

and the reducibility conditions,

ρx,y(ξ |g, α, β) =
∑
ζ=±1

ρx+1,y
x,y (ξ, ζ |g, α, β) =

∑
ζ=±1

ρ
x,y

x−1,y (ζ, ξ |g, α, β)

=
∑
ζ=±1

ρx,y+1
x,y (ξ, ζ |g, α, β) =

∑
ζ=±1

ρ
x,y

x,y−1(ζ, ξ |g, α, β). (129)

To ensure the normalization condition, we introduce the Lagrange multipliers{
νx,y , ν

x+1,y
x,y , ν

x,y+1
x,y

∣∣(x, y) ∈ �} and
{

x+1,y
x,y (ξ),

x,y+1
x,y (ξ)

∣∣(x, y) ∈ �}:
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LBethe
[{
ρx,y , ρ

x+1,y
x,y , ρx,y+1

x,y

}] = FBethe
[{
ρx,y , ρ

x+1,y
x,y , ρx,y+1

x,y

}]
+
∑

(x,y)∈�
νx,y


∑
ζ=±1

ρx,y(ζ |g, α, β)− 1




+
∑

(x,y)∈�
νx+1,y
x,y


∑
ζ=±1

∑
ζ ′=±1

ρx+1,y
x,y (ζ, ζ ′|g, α, β) − 1




+
∑

(x,y)∈�
νx,y+1
x,y


∑
ζ=±1

∑
ζ ′=±1

ρx,y+1
x,y (ζ, ζ ′|g, α, β) − 1




+
∑

(x,y)∈�

∑
(x′,y′)∈cx,y

∑
ζ=±1

x′,y′
x,y (ζ )


ρx,y(ζ |g, α, β)−∑

ζ ′=±1

ρx
′,y′
x,y (ζ, ζ

′|g, α, β)

.

(130)

By taking the first variations of LBethe
[{
ρx,y , ρ

x+1,y
x,y , ρ

x,y+1
x,y

}]
with respect to ρx,y(ζ |g, α, β),

ρ
x+1,y
x,y (ζ, ζ ′|g, α, β) and ρ

x,y+1
x,y (ζ, ζ ′|g, α, β), we derive the expressions of the marginal

probability distributions in terms of the Lagrange multipliers as follows,

ρx,y(ξ |g, α, β) = exp(x,y(ξ))∑
ζ=±1 exp(x,y(ζ ))

(131)

ρx+1,y
x,y (ξ, ξ ′|g, α, β) = exp

(

x+1,y
x,y (ξ) +x,y

x+1,y(ξ
′) + αξξ ′

)
∑

ζ=±1

∑
ζ ′=±1exp

(

x+1,y
x,y (ζ ) +x,y

x+1,y(ζ
′) + αζζ ′

) (132)

ρx,y+1
x,y (ξ, ξ ′|g, α, β) = exp

(

x,y+1
x,y (ξ) +x,y

x,y+1(ξ
′) + αξξ ′

)
∑

ζ=±1

∑
ζ ′=±1exp

(

x,y+1
x,y (ζ ) +x,y

x,y+1(ζ
′) + αζζ ′

) (133)

where x,y(ξ) is defined by the following equation:

−3x,y(ξ) +
∑

(x′,y′)∈cx,y

x′,y′
x,y (ξ) = βgx,yξ ξ = ±1. (134)

By substituting equations (131)–(134) into the reducibility (129), we have

exp


−1

3
βgx,yξ +

1

3

∑
(x′′,y′′)∈cx,y

x′′,y′′
x,y (ξ)


 =


∑
ζ=±1

exp


−1

3
gx,yζ +

1

3

∑
(x′′,y′′)∈cx,y

x′′,y′′
x,y (ζ )






×

∑
ζ=±1

exp
(
αξζ +x′,y′

x,y (ξ) +x,y

x′,y′(ζ )
)

×

∑
ζ=±1

∑
ζ ′=±1

exp
(
αζζ ′ +x′,y′

x,y (ζ ) +x,y

x′,y′(ζ
′)
)
−1

(x, y) ∈ � (x ′, y ′) ∈ cx,y ξ = ±1. (135)

Now, we introduce the following replacement,

x′,y′
x,y (ξ) =

∑
(x′′,y′′)∈cx,y\(x′,y′)

�x′′,y′′
x,y (ξ) + βgx,yξ (136)
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and rewrite the deterministic equations (135) as the following expressions:

exp
(
�x′,y′
x,y (ξ)

)
=

∑
ζ=±1

exp


βgx,yζ +

∑
(x′′,y′′)∈cx,y

�x′′,y′′
x,y (ζ )






×

∑
ζ=±1

exp


βgx′,y′ζ + αξζ +

∑
(x′′,y′′)∈cx′,y′ \(x,y)

�
x′′,y′′
x′,y′ (ζ )






×

∑
ζ=±1

∑
ζ ′=±1

exp


βgx,yζ + βgx′ ,y′ζ ′ + αζζ ′ +

∑
(x′′,y′′)∈cx,y\(x′,y′)

�x′′,y′′
x,y (ζ )

+
∑

(x′′,y′′)∈cx′,y′ \(x,y)
�
x′′,y′′
x′,y′ (ζ

′)





−1

(x ′, y ′) ∈ cx,y ξ = ±1. (137)

We introduce the quantity

λx
′,y′
x,y (g, α, β) ≡ 1

2

(
�x′,y′
x,y (+1)−�x′,y′

x,y (−1)
)

(138)

as an effective field from (x ′, y ′) to (x, y). Because the quantity �x′,y′
x,y (ξ) can be expressed

by means of the orthonormal expansion in terms of an orthonormal set of polynomials2 {1, ξ}
�x′,y′
x,y (ξ) = 1

2

(
�x′,y′
x,y (+1) +�x′,y′

x,y (−1)
)

+ 1
2

(
�x′,y′
x,y (+1)−�x′,y′

x,y (−1)
)
ξ (139)

the simultaneous deterministic equations for effective fields are obtained as follows:

λ
x,y

x±1,y(g, α, β) = arctanh


tanh(α) tanh


βgx,y +

∑
(x′,y′)∈cx,y\(x±1,y)

λx
′,y′
x,y (g, α, β)




 (140)

λ
x,y

x,y±1(g, α, β) = arctanh


tanh(α) tanh


βgx,y +

∑
(x′,y′)∈cx,y\(x,y±1)

λx
′,y′
x,y (g, α, β)




. (141)

The expressions for the marginal probability distributions are given as follows:

ρx,y(ξ) = exp(−Hx,y(ξ))∑
ζ=±1exp(−Hx,y(ζ )) (142)

ρx+1,y
x,y (ξ, ξ ′) = exp

(−Hx+1,y
x,y (ξ, ξ ′)

)
∑

ζ=±1

∑
ζ ′=±1exp

(−Hx+1,y
x,y (ζ, ζ ′)

) (143)

ρx,y+1
x,y (ξ, ξ ′) = exp

(−Hx,y+1
x,y (ξ, ξ ′)

)
∑

ζ=±1

∑
ζ ′=±1exp

(−Hx,y+1
x,y (ζ, ζ ′)

) (144)

where

Hx,y(ξ) ≡ −

βgx,y +

∑
(x′,y′)∈cx,y

λx
′,y′
x,y (g, α, β)


ξ (145)

2 Since it is valid that
∑
ξ=±1(1 × 1) = ∑ξ=±1(ξ × ξ) = 2 and

∑
ξ=±1(1 × ξ) =

∑
ξ=±1(ξ × 1) = 0, the set of

polynomials {1, ξ} can be regarded as an orthonormal set for ξ = ±1.
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Hx+1,y
x,y (ξ, ξ ′) ≡ −αξξ ′ −


βgx,y +

∑
(x′,y′)∈cx,y\(x+1,y)

λx
′,y′
x,y (g, α, β)


ξ

−

βgx+1,y +

∑
(x′,y′)∈cx+1,y\(x,y)

λ
x′,y′
x+1,y (g, α, β)


ξ ′ (146)

Hx,y+1
x,y (ξ, ξ ′) ≡ −αξξ ′ −


βgx,y +

∑
(x′,y′)∈cx,y\(x,y+1)

λx
′,y′
x,y (g, α, β)


ξ

−

βgx,y+1 +

∑
(x′,y′)∈cx,y+1\(x,y)

λ
x′,y′
x,y+1(g, α, β)


ξ ′. (147)

According to equations (84) and (127), the approximate expression for the logarithm of
evidence in the Bethe approximation is given in terms of the posterior marginal probability
distributions ρx,y(ζ |g, α, β), ρx+1,y

x,y (ζ, ζ ′|g, α, β) and ρ
x,y+1
x,y (ζ, ζ ′|g, α, β), and the prior

marginal probability distributions ρx,y(ζ |g, α, β = 0), ρx+1,y
x,y (ζ, ζ ′|g, α, β = 0) and

ρ
x,y+1
x,y (ζ, ζ ′|g, α, β = 0):

ln(Pr{G = g|α, β})  −
∑

(x,y)∈�


−β∑

ζ=±1

gx,yζρx,y (ζ |g, α, β)

− α
∑
ζ=±1

∑
ζ ′=±1

ζ ζ ′
(
ρx+1,y
x,y (ζ, ζ ′|g, α, β) + ρx,y+1

x,y (ζ, ζ ′|g, α, β))
− 3

∑
ζ=±1

ρx,y(ζ |g, α, β) ln ρx,y(ζ |g, α, β)

+
∑
ζ=±1

∑
ζ ′=±1

ρx+1,y
x,y (ζ, ζ ′|g, α, β) ln ρx+1,y

x,y (ζ, ζ ′|g, α, β)

+
∑
ζ=±1

∑
ζ ′=±1

ρx,y+1
x,y (ζ, ζ ′|g, α, β) ln ρx,y+1

x,y (ζ, ζ ′|g, α, β)



+
∑

(x,y)∈�


−α∑

ζ=±1

∑
ζ ′=±1

ζ ζ ′
(
ρx+1,y
x,y (ζ, ζ ′|g, α, β = 0)

+ ρx,y+1
x,y (ζ, ζ ′|g, α, β = 0)

)−3
∑
ζ=±1

ρx,y(ζ |g, α, β=0) lnρx,y(ζ |g, α, β=0)

+
∑
ζ=±1

∑
ζ ′=±1

ρx+1,y
x,y (ζ, ζ ′|g, α, β = 0) lnρx+1,y

x,y (ζ, ζ ′|g, α, β = 0)

+
∑
ζ=±1

∑
ζ ′=±1

ρx,y+1
x,y (ζ, ζ ′|g, α, β = 0) lnρx,y+1

x,y (ζ, ζ ′|g, α, β = 0)




+ |�| ln(2 cosh(β)). (148)

In the case of β = 0, since both the energy function H(f |g, α, β = 0) and the effective
fields λx

′,y′
x,y (g, α, β = 0) are independent of the degraded image g, the effective fields
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λ
x′,y′
x,y (g, α, β = 0) are not dependent on the site (x, y) and can be replaced by notation
λ(α):

λx
′,y′
x,y (g, α, β = 0) = λ(α). (149)

The simultaneous deterministic equations (140) and (141) can be reduced to

λ(α) = arctanh( tanh(α) tanh (4λ(α))). (150)

By using this equation, the deterministic equations (90) and (91) are rewritten as

β = arctanh


 ∑
(x,y)∈�

gx,y tanh


βgx,y +

∑
(x′,y′)∈cx,y

λx−1,y
x,y (g, α, β)




 (151)

1

|�|
∑

(x,y)∈�
arctanh


exp


−2α − 2arctanh


tanh


βgx,y +

∑
(x′,y′)∈cx,y\(x+1,y)

λx
′,y′
x,y (g, α, β)




× tanh


βgx+1,y +

∑
(x′,y′)∈cx,y\(x,y)

λ
x′ ,y′
x+1,y (g, α, β)










+
1

|�|
∑

(x,y)∈�
arctanh


exp


− 2α

− 2arctanh


tanh


βgx,y +

∑
(x′,y′)∈cx,y\(x,y+1)

λx
′,y′
x,y (g, α, β)




× tanh


βgx,y+1 +

∑
(x′,y′)∈cx,y+1\(x,y)

λ
x′ ,y′
x,y+1(g, α, β)










= exp(2α) cosh(6λ(α))− 1

exp(2α) cosh(6λ(α)) + 1
. (152)

3.4. Statistical-mechanical iterative algorithms

In this section, we give statistical-mechanical iterative algorithms by means of the mean-field
and the Bethe approximations in the evidence framework and the MPM estimation derived
above.

First, we explain the iterative algorithm as a numerical calculation scheme to solve the
nonlinear equation that has the following form,

λ = G(λ) (153)

where λ is referred to as the fixed point of the given function G(ξ). In the general numerical
recipe, the procedure to solve the fixed point equation (153) is given as follows:

Basic iterative algorithm to solve the nonlinear equation λ = G(λ)
Step 1: Set a(0) as an initial value and t ← 0.
Step 2: Update r ← r + 1 and

a(r)← G(a(r − 1)). (154)
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Step 3: Update R← r and λ← a(R). Stop if it is satisfied that

|a(r)− a(r − 1)| < ε (155)

and go to step 2 otherwise.

Here, ε should be set as a sufficiently small positive number. Usually, it is enough to set
ε = 10−6. The iterative scheme is one of the typical techniques to solve a nonlinear equation
and is also often referred to as a fixed point iteration or a fixed point method [58, 59].
Because the mean-field deterministic equations (103) and (110) and the Bethe deterministic
equations (140), (141) and (150) have the forms of the simultaneous fixed point equations, the
iterative algorithm to solve them can be constructed by extending the above iterative procedure.

In the mean-field approximation, the algorithm is given by using equations (103) and
(110) as follows:

Algorithm 3.1. Statistical-mechanical image restoration algorithm in the mean-field
approximation

Step 1: Set r ← 0 as an initial value.
Step 2: Update r ← r + 1 and

ax,y(r)← tanh


βgx,y + α

∑
(x′,y′)∈cx,y

ax′,y′(r − 1)


 (x, y) ∈ �. (156)

Step 3: Update R← r and mx,y(g, α, β)← ax,y(R). Stop if it is satisfied that∑
(x,y)∈�

|ax,y(r)− ax,y(r − 1)| < ε (157)

and go to step 2 otherwise.
Step 4: Calculate the marginal probability distributions ρx,y(ζ |g, α, β), by substituting
mx,y(g, α, β) into equation (101).

We can calculate the evidence Pr{G = g|α, β} and both sides of the extremum conditions
(111) and (112) by substituting the values of marginal probability distributions obtained by
using the above approximations for a set of fixed values of α and β in equation (104). By
running the above algorithm for various values of α and β, we obtain the estimates α̂ and β̂
so as to satisfy the deterministic equations (111) and (112).

In the Bethe approximation, the algorithm is given by using equations (140), (141) and
(150) as follows:

Algorithm 3.2. Statistical-mechanical image restoration algorithm in Bethe approximation

Step 1: Set r ← 0 as an initial value.
Step 2: Update r ← r + 1, and

a
x,y

x±1,y(r)← arctanh


tanh (α) tanh


βgx,y +

∑
(x′,y′)∈cx,y\(x±1,y)

ax
′,y′
x,y (r − 1)




 (158)

a
x,y

x,y±1(r)← arctanh


tanh (α) tanh


βgx,y +

∑
(x′,y′)∈cx,y\(x,y±1)

+ ax
′,y′
x,y (r − 1)




. (159)
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(a) (b) (c)

Figure 10. Binary images f∗ generated by the a priori probability distribution (77) forα = 2.15−1.
(a) Sample 1; (b) sample 2; (c) sample 3.

Step 3: Update R ← r . Set λx+1,y
x,y (g, α, β) ← a

x+1,y
x,y (R) and λx,y+1

x,y (g, α, β) ← a
x,y+1
x,y (R)

and go to step 4 if it is satisfied that

1

|�|
∑

(x,y)∈�

(∣∣ax+1,y
x,y (r)− ax+1,y

x,y (r − 1)
∣∣ +
∣∣ax,y+1
x,y (r)− ax,y+1

x,y (r − 1)
∣∣) < ε (160)

and go to step 2 otherwise.
Step 4: Calculate the marginal probability distributions ρx,y(ζ |g, α, β), ρx+1,y

x,y (ζ, ζ ′|g,
α, β) and ρ

x+1,y
x,y (ζ, ζ ′|g, α, β), by substituting λ

x+1,y
x,y (g, α, β) and λ

x,y+1
x,y (g, α, β) into

equations (142)–(147).

We can calculate the evidence Pr{G = g|α, β} and both sides of the extremum conditions
(151) and (152) by substituting the values of marginal probability distributions obtained by
using the above approximations for a set of fixed values of α and β in equation (148). By
running the above algorithm for various values of α and β, the estimates α̂ and β̂ are obtained
so as to satisfy the deterministic equations (151) and (152).

3.5. Numerical experiments

In this section, some numerical experiments are given. We assume that the original image
is generated by the a priori probability distribution (77). First, three binary images in
figure 10, which are generated by Monte Carlo simulations in the a priori probability
distribution (77) for α = 2.15−1, are adopted as original images. Second, two binary images
in figure 11, which are obtained from the standard images ‘home’ and ‘mandrill,’ are adopted
as original images. In this subsection, the original image f and the observable degraded
image g are denoted by f∗ and g∗.

We have a given degraded image g∗ which is obtained from the original image f∗ by
changing the state of each pixel to another state by the same probability p, independently of the
other pixels. Here p is assumed to be less than 1

2 . This degradation process is called a binary
symmetric channel. The conditional probability distribution Pr{G = g|F = f} is given by

Pr{G = g|F = f } = Pr{G = g|F = f , p}
≡

∏
(x,y)∈�

((1− δfx,y ,gx,y )p + (1− p)δfx,y ,gx,y ). (161)
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(a) (b)

Figure 11. Artificial binary images f∗ generated from the 256-valued standard images ‘home’
and ‘mandrill’ by using a thresholded processing. (a) Home; (b) mandrill.

(a) (b) (c)

Figure 12. Restorations of the original image f∗ given in figure 10(a). (a) Degraded image
g∗ (p∗ = 0.2); (b) restored image f̂ by the mean-field approximation; (c) restored image f̂ by the
Bethe approximation.

The conditional probability distribution can be rewritten as equation (76) by setting

β ≡ 1

2
ln

(
1− p
p

)
. (162)

By setting p = 0.2, the degraded images g∗ are produced from the original images f ∗

in the degradation process given in equation (161). The degraded images g∗ produced by
setting p = 0.2 from the original images f∗ in figures 10(a)–(c) are shown in figures 12(a),
13(a) and 14(a), respectively. The true values of the hyperparameters α, p and β =
1
2 ln
( 1−p
p

)
are denoted by α∗, p∗ and β∗ = 1

2 ln
( 1−p∗
p∗
)
, respectively. The restored images

f̂ obtained by applying the statistical-mechanical iterative algorithms in the mean-field
and the Bethe approximations to these degraded images g∗ are shown in figures 12, 13
and 14.

To evaluate the restoration performance quantitatively, ten original images f ∗ are
generated by Monte Carlo simulations in the a priori probability distribution (77) for
α = 2.15−1. We produce a degraded image g∗ from each original image f∗ by means of
the degradation process (76) for p∗ = 0.2. By applying the iterative algorithms of the mean-
field approximation and the Bethe approximation to each degraded image g∗, we obtain the
estimates of the hyperparameters p̂ and α̂ and the restored image f̂ for each degraded image g∗.
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(a) (b) (c)

Figure 13. Restorations of the original image f∗ given in figure 10(b). (a) Degraded image
g∗ (p∗ = 0.2); (b) restored image f̂ by the mean-field approximation; (c) restored image f̂ by the
Bethe approximation.

(a) (b) (c)

Figure 14. Restorations of the original image f∗ given in figure 10(c). (a) Degraded image
g∗ (p∗ = 0.2); (b) restored image f̂ by the mean-field approximation; (c) restored image f̂ by the
Bethe approximation.

From these ten degraded images and the corresponding restored images f̂ , we calculate the
confidence intervals in the confidence coefficient 95% of the estimates of hyperparameters, p̂
and α̂, and the values of the mean square error d(f∗, f̂),

d(f∗, f̂ ) ≡ 1

|�|‖f
∗ − f̂‖2 (163)

and the improvement of signal to noise ratio,�SNR:

�SNR ≡ 10 log10

(‖f∗ − g∗‖2

‖f∗ − f̂‖2

)
(dB). (164)

These confidence intervals are given in table 1. We remark that, in binary image
restoration, d(f∗, f̂)/2 is equal to the Hamming distance between the images f∗ and
f̂ , 1

|�|
∑

(x,y)∈�δf ∗x,y ,f̂ x,y . These results show that very reliable estimated values of the
hyperparameters α and β can be obtained in the Bethe approximation. In the mean-field
approximation, on the other hand, the estimated values are far from the original values.
This result clearly shows that the mean-field approximation is not appropriate in the present
situation. Similar results can be obtained by applying the Metropolis Monte Carlo simulations
instead of the Bethe approximation [25].
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(a) (b) (c)

Figure 15. Binary image restoration of the original image f∗ given in figure 14(a). (a) Degraded
image g∗ (p∗ = 0.1); (b) restored image f̂ by the mean-field approximation; (c) restored image f̂
by the Bethe approximation.

Table 1. The confidence interval in the confidence coefficients 95% of the estimates of
hyperparameters, p̂ and α̂, and the values of d(f∗, f̂) and �SNR obtained for some degraded
images g∗, which are produced for p∗ = 0.2 from ten original images f∗. The ten original
images f∗ are generated by Monte Carlo simulations in the a priori probability distribution (77)
for α = 2.15−1. The hyperparameters are estimated by applying the mean-field approximation
and the Bethe approximation to the maximum marginal likelihood (MML) estimation.

Mean-field approximation Bethe approximation

p̂ [0.054 98± 0.001 00] [0.194 54± 0.001 33]
β̂ [1.573 44± 0.010 45] [0.861 15± 0.004 60]
α̂ [0.268 59± 0.000 01] [0.459 03± 0.001 66]
1/α̂ [4.274 02± 0.000 11] [2.689 62± 0.009 68]
d(f∗, g∗)/2 [0.214 43± 0.000 62] [0.214 43± 0.000 62]

d(f∗, f̂)/2 [0.214 43± 0.000 62] [0.092 22± 0.001 64]
�SNR (dB) [0± 0] [3.929 01± 0.084 05]

We also performed numerical experiments for artificial binary images in figure 11 as
original images. The artificial binary images f∗ are generated from the 256-valued standard
images ‘home’ and ‘mandrill’ by using a thresholded processing3. The image restoration by
means of the iterative algorithms of the mean-field approximation and the Bethe approximation
for the cases of p∗ = 0.1 and p∗ = 0.2 is shown in figures 15, 16, 17 and 18. We give in
tables 2 and 3 the estimates of hyperparameters, p̂ and α̂, and the values of the mean square
error d(f∗, f̂ ) and the improvement of signal to noise ratio,�SNR (dB).

In the present framework for binary image restoration, it has been shown that we can
obtain satisfactory results by the Bethe approximation if the images are produced by the
assumed a priori probability distribution. The restored images obtained by means of the
mean-field approximation are not satisfactory in quality. Although we have to calculate
the free energies and the correlation functions between the nearest-neighbour pairs of pixels in
the a priori and the a posteriori probability distributions in the estimation of hyperparameters
in the evidence framework, the accuracy in the correlation functions of the mean-field
approximation is not sufficient. This is one of the reasons why the results of the mean-
field approximation are not satisfactory. On the other hand, although we also obtain good

3 The standard images ‘home’ and ‘mandrill’ are shown in figure 19 in the next section.
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(a) (b) (c)

Figure 16. Binary image restoration of the original image f∗ given in figure 14(a). (a) Degraded
image g∗ (p∗ = 0.2); (b) restored image f̂ by the mean-field approximation; (c) restored image f̂
by the Bethe approximation.

(a) (b) (c )

Figure 17. Binary image restoration of the original image f∗ given in figure 11(b). (a) Degraded
image g∗ (p∗ = 0.1); (b) restored image f̂ by the mean-field approximation; (c) restored image f̂
by the Bethe approximation.

(a) (b) (c)

Figure 18. Binary image restoration of the original image f∗ given in figure 11(b). (a) Degraded
image g∗ (p∗ = 0.2). (b) restored image f̂ by the mean-field approximation; (c) restored image f̂
by the Bethe approximation.

results for image restoration in the practical binary images by the Bethe approximation, some
noise remains in the results. The main reason is that the practical binary images are not
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Table 2. The estimates of hyperparameters, p̂ and α̂, and the values of d(f∗, f̂) and�SNR obtained
for some degraded images g∗, which are produced for various values of p∗ from the original image
f∗ given in figure 14(a) (home). The hyperparameters are estimated by applying the mean-field
approximation and the Bethe approximation to the MML estimation.

p∗ Approximation p̂ β̂ α̂ 1/α̂ d(f∗, f̂)/2 �SNR (dB)

0.1 Mean-field 0.009 96 2.299 39 0.252 37 3.962 45 0.099 53 0
Bethe 0.048 57 1.487 48 0.410 97 2.433 24 0.047 61 3.202 83

0.2 Mean-field 0.076 93 1.242 44 0.251 35 3.978 47 0.197 91 0
Bethe 0.132 90 0.937 79 0.392 16 2.549 95 0.083 19 3.763 91

Table 3. The estimates of hyperparameters, p̂, β̂, α̂, 1/α̂, and the values of d(f∗, f̂) and �SNR
obtained for some degraded images g∗ , which are produced for p∗ = 0.1 and p∗ = 0.2 from
the original image f∗ given in figure 14(b) (mandrill). The hyperparameters are estimated by
applying the mean-field approximation and the Bethe approximation to the maximization of
marginal likelihood.

p∗ Approximation p̂ β̂ α̂ 1/α̂ d(f∗, f̂)/2 �SNR (dB)

0.1 Mean-field 0.035 08 1.657 22 0.251 524 3.975 76 0.099 03 0
Bethe 0.079 02 1.207 85 0.289 81 2.569 34 0.070 72 1.462 00

0.2 Mean-field 0.100 90 1.093 65 0.250 96 3.984 72 0.159 65 0.947 88
Bethe 0.171 84 0.786 31 0.382 06 2.617 38 0.118 64 2.237 37

produced by the assumed a priori probability distribution, although the a priori probability
distribution (77) is a fair approximation of the original images. It is necessary to improve the
a priori probability distribution so as to be applicable to the practical image with complicated
structures.

3.6. Concluding remarks

In this section, we have explained the basic framework of image restoration of binary images by
means of the Bayes formula and evidence framework. The algorithms have been constructed
by applying the mean-field approximation and the Bethe approximation. Some numerical
experiments show that the Bethe approximation can give good results in image restoration,
while the results of the mean-field approximation are not satisfactory. Nevertheless, it is
obvious that our assumptions for the a priori probability distribution for original images
are not good enough for practical images even if we restrict the original images to binary
ones. From the standpoint of statistical mechanics, some extensions have been made [60–62].
Moreover, the framework can also be applied to image segmentations by extending the model
system to the Potts model [24, 26].

Usually, most computer scientists and statisticians formulate Bayesian image restoration
as a MAP estimation given in equation (8). In the MAP estimation, we have to search for
the most probable configuration of the massive probabilistic model, a process of exponential
order of complexity. Although such a problem can be treated by simulated annealing with the
heat bath or the Metropolis Monte Carlo simulations, it takes a very long time for relaxation.
Recently, some authors adopted the MPM estimation in equation (9) instead of the MAP
estimation.

In the design of a probabilistic information processing system, the performance estimation
is very important. In the image restoration, Mx,y(α, β) in equation (40) corresponds to
a statistical measure in the performance estimation. However, it has not been possible
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to calculate exactly the statistical average such as Mx,y(α, β) for the system where the a
priori probability distribution is assumed to be the Ising model with interactions only between
nearest-neighbourpairs of pixels. We can nevertheless calculate the statistical performance not
as an exact value but as an approximate value by the Bethe approximation. Such investigations
have been carried out for the Ising model with random bond interactions between nearest-
neighbour pairs of pixels [63, 67]. Other statistical-mechanical methods will also be useful
for the estimation of the statistical performance in Markov random field models. This is one
of the future problems.

The Bethe approximation has already been applied to other probabilistic information
processing problems. Kabashima and Saad [68] suggested that a belief propagation algorithm
in error-correcting codes has a very close relationship with the Bethe approximation4. The
formulae of Kabashima and Saad are derived by means of the following replacements,

λ
x,y

x±1,y(g, α, β) ≡ tanh


βgx,y +

∑
(x′,y′)∈cx,y\(x±1,y)

λx
′,y′
x,y (g, α, β)


 (165)

λ
x,y

x,y±1(g, α, β) ≡ tanh


βgx,y +

∑
(x′,y′)∈cx,y\(x,y±1)

λx
′,y′
x,y (g, α, β)


 (166)

in equations (140) and (141). Belief propagation is one of the familiar techniques in the
probabilistic inference of intelligent information processing [71, 72]. Yedidia et al [73]
and Kappen et al [74] suggested that the belief propagation algorithm can be derived from
the variational principle of an approximate free energy in the Bethe approximation and
proposed a method for the construction of a generalized belief propagation based on the cluster
variation method [75, 76]. Their simultaneous recursion formulae in the belief propagation
are equivalent to equation (137).

As another advanced mean-field method for probabilistic image restoration, some cluster-
type mean-field approximations were proposed [77, 78]. The cluster-type mean-field
approximations can be regarded as an extension of the mean-field approximation or the Bethe
approximation from the standpoint of the effective field theory [79].

In this section, we have explained that not only the statistical-mechanical framework but
also the statistical-mechanical approximations are applicable to probabilistic image processing.
These situations are similar in grey-level image restoration. In the next section, we introduce
a grey level image processing by means of a familiar statistical-mechanical model with
continuous degree of freedom at each pixel.

4. Grey-level image processing and Gaussian model

In this section, we discuss grey-level image processing. In practical digital images, each pixel
usually has 256 grey levels, 0, 1, 2, . . . , 255. Such grey levels can be regarded as continuous
degrees of freedom. Actually, in many conventional digital image filters, the degree of freedom
at each pixel is treated as a continuous variable, which we adopt here.

One of the basic degradation processes in grey-level images is an additive white Gaussian
noise with average 0 and variance σ 2 (σ > 0). Generally, when the probability distribution of
the random variable A is given by

Pr{A = a} = 1√
2πσ

exp

(
− 1

2σ 2
(a − µ)2

)
−∞ < a < +∞ (167)

4 They referred to the recursion formulae of effective fields in the Bethe approximation as Touless, Anderson and
Palmer (TAP) equation [69, 70].
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it is denoted by the notation A ∼ N [µ, σ 2] in probability theory and statistics. By using
this notation, the degradation process from the original image f to the degraded image g by
additive white Gaussian noise with average 0 and variance σ 2 can be expressed as

Gx,y − Fx,y ∼ N [0, σ 2] (168)

where Fx,y and Gx,y are random variables at each pixel (x, y) of the original image and the
degraded image, respectively.

One of the most famous linear filters is the following constrained least mean square filter
[1, 80],

f̂ = arg min
z:‖z−g‖2=|�| σ 2


 ∑
(x,y)∈�

((zx,y − zx+1,y)
2 + (zx,y − zx,y+1)

2)


 (169)

where

‖z − g‖2 ≡
∑

(x,y)∈�
(zx,y − gx,y)2. (170)

Here the degradation process is assumed to be additive white Gaussian noise N [0, σ 2]. The
algorithm for obtaining the optimal solution f̂ was constructed by introducing a Lagrange
multiplier γ to ensure the constraint ‖z − g‖2 = |�| σ 2,

ẑ(γ ) = arg min
z
H(z|γ ) (171)

H(z|γ ) ≡
∑

(x,y)∈�
((zx,y − zx+1,y)

2 + (zx,y − zx,y+1)
2) + γ ‖z − g‖2 (172)

and the Lagrange multiplier γ should be determined so as to satisfy the constraint
‖ẑ(γ ) − g‖2 = |�|σ 2. The restored image ẑ(γ ) is obtained from the stationarity condition
for H(z|γ ) with respect to zx,y . Some statistical physicists may note that H(z|γ ) is the
Hamiltonian of the Gaussian model [81, 82].

The Gaussian model can be solved analytically and closed expressions of some correlation
functions can be calculated exactly by means of the Gaussian integral formula and the discrete
Fourier transform. The Gaussian model of equation (172) expresses a smoothing effect
in the first and second terms and takes account of the information from observed data
as the third term. Of course, these effects are not sufficient to treat practical real-world
images, because many real-world images usually have not only smooth regions but also
edges between two different smooth regions and sometimes include textures. Nevertheless,
as a first step towards practical image restoration, it is important to understand the basic
behaviour of the image restoration scheme by means of the solvable probabilistic model from
the statistical-mechanical standpoint. As mentioned in section 1, it is possible to regard the
framework of the conventional filter theory in image processing as a problem of classical spin
systems.

In this section, we express the basic scheme of probabilistic image restoration by means
of the Gaussian model and derive formulae to calculate the statistical performance.

4.1. Bayesian image processing by means of the Gaussian model

In the framework of image restoration for grey-level images, we consider the set R consisting
of whole real numbers and assume that the state at each pixel takes any finite real number. In
this case, F and G are not discrete but continuous random variables. A degradation process
Pr{G = g|F = f} and an a priori probability distribution Pr{F = f } are assumed to be as
follows.
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4.1.1. Degradation process in grey-level images. We adopt the additive Gaussian noise
N [0, σ 2] so that the conditional probability density function Pr{G = g|F = f } is assumed
to be

Pr{G = g|F = f} = Pr{G = g|F = f , σ }

≡
(

1

2πσ 2

) |�|
2

exp


− 1

2σ 2

∑
(x,y)∈�

(fx,y − gx,y )2



 . (173)

4.1.2. A priori probability distribution in grey-level images. The a priori probability density
function, that the original image is f , is given by

Pr{F = f} = Pr{F = f |α}

≡
exp

(
− 1

2 α
∑

(x,y)∈�((fx,y − fx+1,y )
2 + (fx,y − fx,y+1)

2)
)

∫
R
|�| exp

(
− 1

2 α
∑

(x,y)∈�((zx,y − zx+1,y )2 + (zx,y − zx,y+1)2)
)

dz

= exp
(− 1

2 αfCfT)∫
R
|�| exp

(− 1
2 αfCfT) dz

. (174)

Here C is an |�| × |�|matrix whose (x, y|x ′, y ′)-element is defined by

〈x, y|C|x ′, y ′〉 ≡ δx,x′δy,y′ − 1
4δx,x′+1δy,y′ − 1

4δx,x′−1δy,y′ − 1
4δx,x′δy,y′+1 − 1

4δx,x′δy,y′−1

(175)

and the integral is defined by∫
R
|�|

dz ≡
∫ +∞

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞

∏
(x,y)∈�

dzx,y . (176)

By substituting equations (173) and (174) into equation (7), the a posteriori probability
distribution is given as

Pr{F = f |G = g} = Pr{F = f |G = g, α, σ } = exp(−E(f |g, α, σ ))∫
R
|�|exp(−E(z|g, α, σ )) dz

(177)

where

E(f |g, α, σ ) ≡ 1

2σ 2

∑
(x,y)∈�

(fx,y − gx,y)2 +
1

2
α
∑

(x,y)∈�
((fx,y − fx+1,y )

2 + (fx,y − fx,y+1)
2)

= 1

2σ 2
‖f − g‖2 +

1

2
αf TCf

= 1

2σ 2
(f − (I + ασ 2C)−1g)

T
(I + ασ 2C)(f − (I + ασ 2C)−1g)

+
1

2
αgTC(I + ασ 2C)−1g. (178)

The a priori probability distribution (174) can be regarded as a conditional autoregressive
model [83, 84] in the signal processing:

fx,y − fx+1,y ∼ N
[

0,
1

α

]
fx,y − fx,y+1 ∼ N

[
0,

1

α

]
. (179)

This probabilistic model is equivalent to the Gaussian model in statistical physics [81, 82].
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In the framework of image restoration of grey-level images given in equation (177), the
hyperparameters α and σ are determined by

(α̂, σ̂ ) = arg max
(α,σ )

Pr{G = g|α, σ } (180)

where

Pr{G = g|α, σ } ≡
∫

R
|�|

Pr{G = g|F = f , σ } Pr{F = f |α} dz. (181)

The maximum marginal likelihood estimates of α and σ are denoted by α̂ and σ̂ ,
respectively. For the obtained estimates α̂ and σ̂ , the restored image f̂ ≡ {f̂ x,y}(h(g, α̂, σ̂ ) ≡
{hx,y(g, α̂, σ̂ )}) is determined by

f̂ x,y = hx,y(g, α̂, σ̂ ) ≡
∫
zx,y Pr{F = z|G = g, α̂, σ̂ } dz. (182)

4.2. Discrete Fourier transform and exact expression of evidence

By introducing the unitary matrix U defined by

〈x, y|U |p, q〉 ≡ 1√|�| exp

(
−i

2πpx

Lx
− i

2πqy

Ly

)
(183)

we can diagonalize the matrix C as follows,

〈p, q|U−1CU |p′, q ′〉 = δp,p′δq,q ′λ(p, q) (184)

where

λ(p, q) ≡ 1− 1

2
cos

(
2πp

Lx

)
− 1

2
cos

(
2πq

Ly

)
. (185)

By using equation (184), the partition functions of the a priori and the a posteriori probability
density functions in equations (174) and (177) can be expressed in the following form:

Zprior(α) ≡
∫

R
|�|

exp


−1

2
α
∑

(x,y)∈�
((zx,y − zx+1,y )

2 + (zx,y − zx,y+1)
2)


 dz

= (2π)
|�|
2 {det(αC)}− 1

2 = (2π) |�|2


Lx−1∏
p=0

Ly−1∏
q=0

1

αλ(p, q)




1
2

(186)

Zposterior(α, σ ) ≡
∫

R
|�|

exp(−E(z|g, α, σ )) dz

= (2πσ 2)
|�|
2 {det(I + ασ 2C)}−

1
2 exp

(− 1
2 αgTC(I + ασ 2C)−1g

)

= (2π) |�|2


Lx−1∏

p=0

Ly−1∏
q=0

σ 2

1 + ασ 2λ(p, q)




1
2

× exp


−1

2

Lx−1∑
p=0

Ly−1∑
q=0

|G(p, q)|2 αλ(p, q)

1 + ασ 2λ(p, q)


 (187)

where

G(p, q) ≡ 1√|�|
∑

(x,y)∈�
gx,y exp

(
−i

2πpx

Lx
− i

2πqy

Ly

)
. (188)
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By substituting equations (186) and (187) into equation (181), the logarithm of marginal
likelihood Pr{G = g|α, σ } is obtained in the following form:

ln (Pr{G = g|α, σ }) = ln(Zposterior(α, σ ))− ln(Zprior(α, σ )) − ln(
√

2πσ)

= −|�|
2

ln (2π)− 1

2

Lx−1∑
p=0

Ly−1∑
q=0

ln(1 + ασ 2λ(p, q)) +
|�|
2

ln (α)

+
1

2

Lx−1∑
p=0

Ly−1∑
q=0

ln(λ(p, q))− 1

2

Lx−1∑
p=0

Ly−1∑
q=0

|G(p, q)|2 αλ(p, q)

1 + ασ 2λ(p, q)
. (189)

By replacing the summation 1
Ly

∑Ly−1
q=0 by the integral 1

2π

∫ 2π
0 dθ and using the integral formula,

1

2π

∫ 2π

0
ln(2(a − cos(θ))) dθ = arccosh(|a|) (190)

we can rewrite the fourth term of equation (189):

1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

ln(λ(p, q)) = −2 ln (2) +
Lx−1∑
p=0

arccosh

(
2− cos

(
2πp

Lx

))
. (191)

The extremum conditions of ρ{G = g∗|α, σ } at α = α̂ and σ = σ̂ can be reduced to the
following simultaneous equations:

1

α̂
= 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

σ̂ 2λ(p, q)

1 + α̂σ̂ 2λ(p, q)
+

1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

|G(p, q)|2 λ(p, q)

(1 + α̂σ̂ 2λ(p, q))2
(192)

σ̂ 2 = 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

σ̂ 2

1 + α̂σ̂ 2λ(p, q)
+

1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

|G(p, q)|2 α̂2σ̂ 4λ(p, q)2

(1 + α̂σ̂ 2λ(p, q))2
. (193)

The restored image f̂ in equation (182) can be expressed explicitly as

f̂ = h(g, α̂, σ̂ ) = (I + α̂σ̂ 2C)−1g (194)

and

f̂ x,y = hx,y(g, α̂, σ̂ ) =
1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

1

1 + α̂σ̂ 2λ(p, q)

(
cos

(
2πpx

Lx
+

2πqy

Ly

)
Re(G(p, q))

+ sin

(
2πpx

Lx
+

2πqy

Ly

)
Im(G(p, q))

)
. (195)

In this way, the restoration process reduces to this simple arithmetic computation.

4.3. Statistical performance

In this section, we derive some statistical properties of the present model. We calculate the
statistical averages of the mean square error d(f∗, f̂ ) and the log-evidence ln (Pr{g|α, β}).
The results are useful for estimating the statistical performance of the Bayesian approach to
image restoration analytically.

The value σ ∗ is for hyperparameter σ when the degraded image g is generated from the
given original image f by the degradation process (173). The value α∗ is for hyperparameter
α when the original image f is generated by the a priori probability density function (174).
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To treat practical grey-level real-world images, we assume that they are generated by the a
priori probability density function (174), though such an assumption is not valid exactly.

In the maximum likelihood estimation, the value α∗ is determined so as to maximize
the likelihood Pr{F = f |α} with respect to the hyperparameters α and σ . The logarithm of
likelihood Pr{F = f |α} can be expressed as

ln(Pr{F = f |α}) = |�|
2

ln (2π)− |�|
2

ln(α)

− 1

2

Lx−1∑
p=0

Ly−1∑
q=0

ln(λ(p, q)) +
1

2

Lx−1∑
p=0

Ly−1∑
q=0

|F(p, q)|2αλ(p, q) (196)

where

F(p, q) ≡ 1√|�|
∑

(x,y)∈�
fx,y exp

(
−i

2πpx

Lx
− i

2πqy

Ly

)
. (197)

The conditions for an extremum of Pr{F = f |α} at α = α∗ are reduced to the following
equations:

1

α∗
= 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

λ(p, q) +
1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

|F(p, q)|2λ(p, q). (198)

Now, as a measure of restoration performance, we define the statistical average of the
difference between the original and corresponding restored images by

M(α, σ ) ≡
∫ ∫
‖z − h(g, α, σ )‖2 Pr{G = g|F = z, σ ∗} Pr{F = z|α∗} dz dg (199)

where h(g, α, β) is defined by equation (182) and is obtained as equation (194). By
substituting equations (173), (174) and (195) into the right-hand side of equation (199) and
using equation (178), we obtain the expression of the quantity M(α, σ ) as follows:

M(α, σ ) = 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

σ ∗2

1 + α∗σ ∗2λ(p, q)

+
1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

(
σ ∗2

(1 + α∗σ ∗2λ(p, q))2
− σ 2

(1 + ασ 2λ(p, q))2

)2

. (200)

It is obvious that the statistical overlap M(α, σ ) gives the maximum value only at (α, σ ) =
(α∗, σ ∗). The result (200) was first obtained by Nishimori [85].

We consider a statistical average L(α, σ ) of the logarithm of marginal likelihood
ln(Pr{G = g|α, σ }) with respect to the degradation process (173) and the a priori probability
distribution (174):

L(α, σ ) ≡
∫

lnPr{G = g|α, σ }
(∫

Pr{G = g|F = z, σ ∗} Pr{F = z|α∗} dz

)
dg. (201)

By substituting equations (173) and (174), and the third expression of equation (189) into the
right-hand side of (201) and by using equation (178), we obtain the expression of the quantity
L(α, σ ) as follows:

L(α, σ ) = −|�|
2

ln (2π) +
1

2

Lx−1∑
p=0

Ly−1∑
q=0

ln

(
αλ(p, q)

1 + ασ 2λ(p, q)

)

− 1

2

Lx−1∑
p=0

Ly−1∑
q=0

(
αλ(p, q)

α∗λ(p, q)

)(
1 + α∗σ ∗2λ(p, q)
1 + ασ 2λ(p, q)

)
. (202)
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By differentiating the quantity L(α, σ ) with respect to the hyperparameters α and σ , the
conditions for extrema of L(α, σ ) at α = α̂ and σ = σ̂ are reduced to the following
simultaneous equations:

1

α̂
= 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

σ̂ 2λ(p, q)

1 + α̂σ̂ 2λ(p, q)
− 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

(
λ(p, q)(1 + α∗σ ∗2λ(p, q))
α∗λ(p, q)(1 + α̂σ̂ 2λ(p, q))2

)
(203)

σ̂ 2 = 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

(
σ̂ 2

1 + α̂σ̂ 2λ(p, q)

)
− 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

(
α̂2σ̂ 4λ(p, q)2(1 + α∗σ ∗2λ(p, q))

α∗λ(p, q)(1 + α̂σ̂ 2λ(p, q))2

)
.

(204)

It is obvious that equations (203) and (204) are satisfied by α̂ = α∗ and σ̂ = σ ∗.

4.4. Statistical-mechanical iterative algorithms

Relations derived in the previous subsection are used here to give the algorithm for the
estimation of the hyperparameters (σ̂ , α̂) and the restored image f̂ for a given degraded
image g. Also, we construct the algorithms to estimate the statistical performance M(σ ∗, α∗)
and the statistical behaviour in the iteration process for hyperparameter estimations for an
original image f .

First, we construct an algorithm for obtaining the estimates of hyperparameters, α̂ and σ̂ ,
and the restored image f̂ when a degraded image g is given. From the extremum conditions
(192) and (193) of the marginal likelihood, Pr{G = g|α, σ }, and expression (195) of the
restored image f̂ x,y , we can construct the following recursion formulae:

Algorithm 4.1. Statistical-mechanical image restoration algorithm by the Gaussian model

Step 1: Calculate the discrete Fourier transform G(p, q) of the given degraded image g by
equation (188). Set r ← 0, a(0)← 1 and b(0)← 1 as the initial values.
Step 2: Update r ← r + 1, and

a(r)←

 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

b(r − 1) λ (p, q)

1 + a(r − 1) b (r − 1) λ (p, q)

+
1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

|G(p, q)|2 λ(p, q)

(1 + a(r − 1) b (r − 1) λ (p, q))2



−1

(205)

b(r)← 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

b(r − 1)

1 + a(r − 1) b (r − 1) λ (p, q)

+
1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

|G(p, q)|2 a(r − 1)2b(r − 1)2λ(p, q)2

(1 + a(r − 1) b (r − 1)λ(p, q))2
. (206)

Step 3: Update σ̂ ←√b(r), α̂← a(r) and R← r . Go to step 4 if it is satisfied that∣∣∣∣a(r)− a(r − 1)

a(r − 1)

∣∣∣∣ +

∣∣∣∣b(r)− b(r − 1)

b(r − 1)

∣∣∣∣ < ε (207)

and go to step 2 otherwise.
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Step 4: For the obtained estimates α̂ and σ̂ , the restored image f̂ ≡ {f̂ x,y
}

is determined by

f̂ x,y ← arg min
n=0,1,...,255

(
n−

∫
zx,y Pr{F = z|G = g, α̂, σ̂ } dz

)2

. (208)

In algorithm 4.1, R denotes the final iteration number when a(r) and b(r) converge. The
estimation of the restored image f̂ in equation (208) is called the TPM estimation [20].

Second, we give an algorithm for estimating the statistical performance with respect to
all possible degraded images g generated by obeying the degradation process (173) for a
fixed value σ = σ ∗ from a given original image f . From equations (198) and (200), the
statistical quantity M(α∗, σ ∗) for the given original image f and an additive white Gaussian
noise N [0, σ ∗2] are obtained in the following procedure:

Algorithm 4.2. Statistical-performance estimation algorithm in image restoration by the
Gaussian model

Step 1: Calculate the discrete Fourier transform F(p, q) of the given standard image f by
equation (197).
Step 2: Determine the value of α∗ by

α∗ ←

 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

λ(p, q) +
1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

|F(p, q)|2λ(p, q)


−1

. (209)

Step 3: Calculate the quantityM(α∗, σ ∗) as follows:

M(α∗, σ ∗)← 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

σ ∗2

1 + α∗σ ∗2λ(p, q)
. (210)

Finally, we give an algorithm for estimating how the hyperparametersα and σ converge to
the true values α∗ and σ ∗ statistically with respect to all possible degraded images g generated
by obeying the degradation process (173) from the given original image f . From the extremum
conditions (203) and (204) of the statistical average of the logarithm of marginal likelihood,
L(α, σ ), we can construct an algorithm, which gives us a statistical estimation of how a(r)

and b(r) converge to the estimates α̂ and σ̂ 2 in the iteration process of equations (205) and
(206) in the maximization of marginal likelihood for a given original image f , as follows:

Algorithm 4.3. Statistical behaviour estimation algorithm in hyperparameter determination

Step 1: Calculate the discrete Fourier transform F(p, q) of the given standard image f by
means of equation (197).
Step 2: Determine the values of α∗ by

α∗ ←

 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

λ(p, q) +
1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

|F(p, q)|2λ(p, q)


−1

. (211)

Step 3: Set r ← 0, c(0)← 1 and d(0)← 1.
Step 4: Update r ← r + 1, and

c(r)←

 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

d(r − 1) λ (p, q)

1 + c(r − 1)d(r − 1) λ (p, q)

− 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

(
λ(p, q)

α∗λ(p, q)

)(
(1 + α∗σ ∗2λ(p, q))

(1 + c(r − 1)d(r − 1) λ (p, q))2

)
−1

(212)
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(a) (b)

Figure 19. Standard images f∗. (a) ‘Home’; (b) ‘mandrill’.

d(r)← 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

(
d(r − 1)

1 + c(r − 1)d(r − 1) λ (p, q)

)

− 1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

(
c(r − 1)2d(r − 1)2λ(p, q)2

α∗λ(p, q)

)

×
(

(1 + α∗σ ∗2λ(p, q))

(1 + c(r − 1)d(r − 1) λ (p, q))2

)
. (213)

Step 5: Update σ̂ ←√d(r), α̂← c(r) and R← r . Stop if it is satisfied that∣∣∣∣c(r)− c(r − 1)

c(r − 1)

∣∣∣∣ +

∣∣∣∣d(r)− d(r − 1)

d(r − 1)

∣∣∣∣ < ε (214)

and go to step 4 otherwise.

We remark that, in the above algorithm, c(r) and d(r) correspond to statistical averages of
a(r) and b(r) with respect to random fields F and G in the probability Pr{F ,G|α∗, σ ∗} ≡
Pr{G|F , σ ∗}Pr{F |α∗}.

In algorithms 4.2 and 4.3, we give a little more detailed explanation. In the algorithms,
the value of α∗, which is maximizing the likelihood Pr{F = f |α} in equations (196)
and (197) for a given original image f , is regarded as a true value of the hyperparameter α
for the given original image f although the given original image f is not generated by obeying
the a priori probability density function Pr{F = f |α∗} in equation (174). In algorithm 4.3,
the statistical behaviour of the convergence process of the hyperparameters α and σ is given
as a series {c(r), d(r)|r = 1, 2, 3, . . . , R}.

4.5. Numerical experiments

In this subsection, we give some numerical experiments of image restoration by the maximum
marginal likelihood estimation and the Gaussian model for the standard images given in
figure 19.

We have followed algorithm 4.1 given in subsection 4.4. The degraded images g∗

are generated from the original images f∗ in figure 19 by setting σ ∗ = 10, 20, 30, 40 and
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(a) (b)

Figure 20. Degraded images g∗ for σ ∗ = 30. (a) ‘Home’; (b) ‘mandrill’.

Table 4. Values of σ̂ , α̂, d(f∗, g∗), d(f∗, f̂) and �SNR (dB) for the original image f∗ given in
figure 19(a).

σ ∗ σ̂ α̂ d(f∗, g∗) d(f∗, f̂) �SNR (dB)

10 0.332 0.004 70 92.44 92.44 0
20 9.753 0.002 46 382.43 260.75 1.663 28
30 22.352 0.002 13 860.22 280.98 4.859 34
40 32.965 0.001 99 1495.63 304.54 6.911 80
50 42.508 0.001 94 2247.05 333.48 8.285 43

Table 5. Values of σ̂ , α̂, d(f∗, g∗), d(f∗, f̂) and �SNR (dB) for the original image f∗ given in
figure 19(b).

σ ∗ σ̂ α̂ d(f∗, g∗) d(f∗, f̂) �SNR (dB)

10 0.813 0.002 92 92.44 92.44 0
20 15.996 0.002 62 383.60 190.81 3.032 77
30 27.803 0.002 83 867.74 255.82 5.304 55
40 37.970 0.002 96 1521.80 314.36 6.849 30
50 47.149 0.003 08 2299.78 363.05 8.017 20

50 for the additive white Gaussian noise N [0, σ ∗2] given in equation (173). By applying
algorithm 4.1 to each degraded image g∗, the corresponding restored image f̂ is obtained.
For the restored images f̂ , the estimates of hyperparameters α̂ and σ̂ and the values of
d(f∗, f̂ ) in equation (163) and �SNR in equation (164) are given in tables 4 and 5. For the
original images in figure 19, the degraded images g∗ and the corresponding restored images
f̂ in σ ∗ = 30 are given in figures 20 and 21, respectively. The results show that some
noise still remains in the restored image of ‘home’ but the restored image of ‘mandrill’ is
satisfactory.

We next explain the statistical performance estimation for the original images given in
figure 19. In the Gaussian model, the value of α which maximizes the a priori probability
density function (174) is adopted as the value of α∗. In each case, the standard images ‘home’
and ‘mandrill’ given in figure 19 are set as the original image f∗ in the a priori probability
density function (174). The values of α∗ and the statistical quantities M(σ ∗, α∗) obtained
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(a) (b)

Figure 21. Restored images f̂ obtained by the Gaussian model for σ ∗ = 30. (a) ‘Home’;
(b) ‘mandrill’.

Table 6. Values of M(σ ∗, α∗)when the original image f∗ is set to the image given in figure 19(a).

σ ∗ α∗ M(σ ∗, α∗)

10 0.008 24 58.00
20 0.008 24 114.84
30 0.008 24 150.24
40 0.008 24 174.81
50 0.008 24 193.44

Table 7. Values of M(σ ∗, α∗)when the original image f∗ is set to the image given in figure 19(b).

σ ∗ α∗ M(σ ∗, α∗)

10 0.004 01 72.90
20 0.004 01 172.39
30 0.004 01 244.03
40 0.004 01 295.67
50 0.004 01 335.14

from algorithm 4.2 for various values of σ ∗ are given in tables 6 and 7, although these standard
images are not generated from the a priori probability density function. By using algorithm 4.3,
we obtain the statistical behaviour of the iteration processes (205) and (206) in the algorithms
of the maximization of evidence for standard images ‘home’ and ‘mandrill’. The dynamical
behaviour is given in figures 22 and 23. These values for statistical performance in ‘mandrill’
are close to the corresponding numerical experiments given in table 5. On the other hand, the
values for statistical performance in ‘home’ are not so close to the corresponding numerical
experiments given in table 4. These results show that the standard image ‘mandrill’ satisfies
the assumption that the a priori probability density function is given in equation (174), while
the standard image ‘home’ does not. These facts can also be understood from comparison
of the values of α∗ in tables 4 and 5 with those of α̂ in tables 6 and 7.

4.6. Constrained least mean square filter

As mentioned in the beginning of the present section, we have the constrained least mean
square filter as one of the conventional linear filters in image and signal processing. When
physicists try to investigate image processing from the standpoint of statistical mechanics, it is
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d(r)

c(r)

“Home”
α∗ = 0.00824

σ∗ = 30
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σ∗ = 50

Figure 22. The statistical behaviour of the iterative process in equations (205) and (206), which is
obtained from the recursion formulae (212) and (213) for the image given in figure 19(a).
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0.005

0.010

d(r)
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α∗ = 0.00401

σ∗ = 30
σ∗ = 40
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Figure 23. The statistical behaviour of the iterative process in equations (205) and (206), which is
obtained from the recursion formulae (212) and (213) for the image given in figure 19(b).

important to understand the conventional filters. We cannot review all the conventional filters
due to limitations of space in the present paper. The present author hopes that the readers
see some textbooks on conventional image and signal processing [1–3]. In this subsection,
we will explain a little more detailed formulation and give some numerical experiments in the
constrained least mean square filter because the filter has a close relationship to the Gaussian
model.

The energy functions H(f |g, γ ) in equation (172) and E(f |g, σ, α) in equation (178)
are equivalent to each other except for the constant factor 1

2α. The present calculation by
means of the discrete Fourier transform can also be applied to the constrained least mean
square filter (169)–(172). Now we compare the evidence framework in the Gaussian model
with the constrained least mean square filter. By a similar argument to the derivation of
equation (195), the constrained least mean square filter (169)–(172) can be reduced to the
following form,

f̂ x,y =
1

|�|
Lx−1∑
p=0

Ly−1∑
q=0

1

1 + γ λ(p, q)

(
cos

(
2πpx

Lx
+

2πqy

Ly

)
ReG(p, q)

+ sin

(
2πpx

Lx
+

2πqy

Ly

)
ImG(p, q)

)
(215)

where the Lagrange multiplier γ is determined so as to satisfy the constraint ‖ẑ(γ )− g‖2 =
|�|σ 2, which is reduced to
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(a) (b)

Figure 24. Restored images f̂ obtained by means of the constrained least mean square filter for
σ ∗ = 30. (a) ‘Home’ (b) ‘mandrill’.

Table 8. Values of γ̂ , d(f∗, g∗), d(f∗, f̂) and �SNR (dB) obtained by using the constrained least
mean square filter (169)–(172) for the original image f∗ given in figure 19(a).

σ ∗ γ̂ d(f∗, g) d(f∗, f̂) �SNR (dB)

10 2.447 00 92.44 72.53 1.053 06
20 6.516 85 382.43 162.94 3.705 08
30 12.483 92 860.22 251.13 5.347 10
40 23.087 83 1495.63 355.02 6.245 74
50 49.954 38 2247.05 512.03 6.423 21

Table 9. Values of γ̂ , d(f∗, g), d(f∗, f̂) and �SNR (dB) by using the constrained least mean
square filter (169)–(172) for the original image f∗ given in figure 19(b).

σ ∗ γ̂ d(f∗, g∗) d(f∗, f̂) �SNR (dB)

10 1.292 39 92.44 95.56 −0.143 96
20 3.985 65 383.59 209.79 2.620 94
30 8.465 61 867.74 294.77 4.689 09
40 16.445 90 1521.80 366.23 6.186 06
50 37.675 63 2299.78 450.14 7.083 36

γ̂ = σ ∗2

1
|�|
∑Lx−1

p=0

∑Ly−1
q=0 |G(p, q)|2 λ(p,q)2

(1+γλ(p,q))2

. (216)

We show in tables 8 and 9 the values of γ̂ , d(f∗, f̂ ) and �SNR for the restored images f̂
obtained by applying the constrained least mean square filter (215), (216) to the degraded
images g∗ which are generated from the original images f∗ given in figure 19 for various
values of σ ∗. For the degraded images g∗ in figure 20, the restored images f̂ obtained by
using the constrained least mean square filter (215), (216) are shown in figure 24. Although
we use the value of σ ∗ in the image restoration, the quality of the restored image f̂ is seen not
to be sufficient and too blurred.
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4.7. Concluding remarks

In this section, we have explained grey-level image restoration by the Gaussian model. The
fact that the Gaussian model is applicable to the Bayesian approach to image restoration was
pointed out by Nishimori [85]. The Gaussian model can be extended from various points
of view. In the present subsection, we summarize some interesting extensions based on the
Gaussian model.

From the standpoint of image processing, the Gaussian model is equivalent to a method
called the conditional autoregressive model in which

fx,y − fx+1,y ∼ N
[

0,
1

α

]
fx,y − fx,y+1 ∼ N

[
0,

1

α

]
. (217)

Molina et al [83, 84] investigated the determination of hyperparameters in a simultaneous
autoregressive model given in the form

fx,y − 1

4
(fx+1,y + fx−1,y + fx,y+1 + fx,y−1) ∼ N

[
0,

1

α

]
. (218)

The model can be treated analytically by analogous arguments to the present section. The
present author and Inoue extended these autoregressive models to a generalized version of
the grey-level image restoration scheme by means of solvable random field models and
investigated the hyperparameter determination in the maximization of evidence by calculating
the exact closed expression of evidence using the Gaussian integral formula and discrete
Fourier transform [86]. They proposed the following a priori probability density function:

Pr{F = f} = Pr{F = f |α, ν} ≡ exp
(− 1

2 αfCνfT)∫
R
|�| exp

(− 1
2 αfCνfT) dz

(219)

instead of equation (174). In this model, not only α but also ν are hyperparameters. The
hyperparameters α, ν and σ are determined by

(α̂, ν̂, σ̂ ) = arg max
(α,ν,σ )

Pr{G = g|α, ν, σ } (220)

where

Pr{G = g|α, σ } ≡
∫

R
|�|

Pr{G = g|F = f , σ } Pr{F = f |α, ν} dz. (221)

We remark that the case of ν = 1 corresponds to that in equations (217) and (219), and that
the case of ν = 2 corresponds to that in equation (218). They insisted that the picture quality
of the restored image can be improved by introducing the new hyperparameter ν which takes a
real number. The framework of their reference has been extended to the solvable probabilistic
model in colour image restoration [87].

In the above statements, we have treated the a priori probability density function with
only the spatially uniform hyperparameters α. Some physicists, particularly the researchers
of spin glass theory, may be interested in the one with spatially non-uniform hyperparameters
α ≡ {αx+1,y

x,y , α
x,y+1
x,y |(x, y) ∈ �

}
. Many grey-level images include not only smooth areas

but also edges. If the smoothness is regarded as important, the edge areas are also smoothed
out. If the edges are preserved, the noise cannot be erased sufficiently. In order to resolve
this conflict, we have to introduce a strategy to change the value of the hyperparameter α in
each area. One idea is to introduce adaptive smoothing. In order to achieve this goal, an
inhomogeneous probabilistic model is introduced:
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Pr{F = f} = Pr{F = f |α}

≡
exp

(
− 1

2

∑
(x,y)∈�

(
α
x+1,y
x,y (fx,y − fx+1,y )

2 + αx,y+1
x,y (fx,y − fx,y+1)

2
))

∫
R
|�| exp

(
− 1

2

∑
(x,y)∈�

(
α
x+1,y
x,y (zx,y − zx+1,y)2 + αx,y+1

x,y (zx,y − zx,y+1)2
))

dz

(222)

instead of equation (219). Molina et al [84], Aykroyd [89] and Dunmur and Titterington
[88] proposed that the spatial variations of αx+1,y

x,y and αx,y+1
x,y are also regarded as random

variables and introduced probability density functions P(αx+1,y
x,y

)
and P(αx,y+1

x,y

)
for αx+1,y

x,y and

α
x,y+1
x,y , which are referred to as hyperpriors. The joint probability density function Pr{F =

f ,G = g,α|σ } and the a posteriori probability density function Pr{F = f ,α|G = g, σ } are
defined by

Pr{F = f ,G = g,α|σ }

≡ Pr{G = g|F = f , σ } Pr{F = f |α}

 ∏
(x,y)∈�

P (αx+1,y
x,y

)P (αx,y+1
x,y

) (223)

and

Pr{F = f ,α|G = g, σ } ≡ Pr{F = f ,G = g,α|σ }∫
Pr{F = f ,G = g,α|σ } df dα

(224)

respectively. The hyperparameters α and σ and the restored image f̂ are determined from
these probability density functions. A stream of these investigations in the hyperprior have
been dealt with mainly by statisticians [90]. Currently, the mainstream approach to achieve
adaptive smoothing in practical Bayesian image restoration is to introduce a line field and
the investigations of the framework based on the hyperprior are restricted only to statistical
interests. However, it is obvious that this framework is close to spin glass theory and the
author believes that many researchers in the field of spin glasses will begin to investigate it.

5. Coupled Markov random field model

In section 4, we elucidated the probabilistic computational method when the a priori
probability density function is assumed to be given as the Gaussian model in equation (174).
The idea behind this a priori probability is smoothing of neighbouring pixel values. If the
hyperparameters are adjusted to stress spatial smoothness, the restored images will be blurred
too much. If, on the other hand, the hyperparameters are adjusted to take account mostly of the
observed data g, many isolated noises remain. Particularly, in the grey-level image restoration,
this is the limit of the simple Gaussian model as an a priori probability density function, and it
is difficult to treat images with many edges. In order to improve this strong smoothing effect
of the Gaussian model, Geman and Geman [6] and Jeng and Woods [8] introduced a method
with an edge state at each nearest-neighbour pair of pixels.

In a system consisting of two pixels at (1, 1) and (1, 2), we consider the following a priori
probability distribution with an edge state l:

Pr{F1,1 = f1,1, F1,2 = f1,2, L
1,2
1,1 = l|α, γ }

=
∑1

l=0 exp
(− 1

2α(1 − l)((f1,1 − f1,2)
2 − γ 2)

)
∫ +∞
−∞
∫ +∞
−∞
∑1

l=0 exp
(− 1

2α(1 − l)((z1,1 − z1,2)2 − γ 2)
)

dz1,1 dz1,2

(225)

instead of equation (174). If |f1,1 − f1,2| is larger than γ , the edge state l should favour
existence (l = 1). If |f1,1 − f1,2| is smaller than γ on the other hand, it should favour the ‘no
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edge state’ (l = 0). In order to clarify the relationship between the classical spin system and
the probabilistic model for image restoration, we introduce a temperature T (>0) and consider
the partial summation with respect to the edge state l as follows,

−T ln

{
1∑
l=0

exp

(
− 1

2T
α(1 − l)((fx,y − fx′,y′ )2 − γ 2)

)}

= −T ln

{
1 + exp

(
− 1

2T
α((fx,y − fx′ ,y′)2 − γ 2)

)}
→ ψ(fx,y − fx′ ,y′) T → +0 (226)

where

ψ(r) ≡
{
α(r2 − γ 2) |r|� γ
0 |r|�γ. (227)

This equality means that the hyperparameter γ corresponds to a control parameter for the
boundary between smoothness and flatness.

In this section, we introduce a Markov random field model which has an edge state at each
nearest-neighbour pair of pixels. The model with an edge state is called a coupled Markov
random field model or a compound Gauss–Markov random field model. We summarize a
conventional coupled Markov random field model and extend it to a quantized one.

5.1. Intensity field and line field

We extend the framework of grey-level image restoration in the previous section to a coupled
Markov random field model with an edge state. The coupled Markov random field model
introduced in the present subsection is the most basic one. A set of random variables for
edge states is called a line field. The random field F for intensity at each pixel is called
the intensity field. We introduce an edge state at each nearest-neighbour pair of pixels. All
possible edge states are the ‘no edge’ state and the ‘edge’ state. The random variable for
an edge at the nearest-neighbour pairs of pixels, (x, y) and (x + 1, y), is denoted by Lx+1,y

x,y

and the one at the pairs of pixels, (x, y) and (x, y + 1) by Lx,y+1
x,y . We assign 1 and 0 to the

‘edge’ state and the ‘no edge’ state, respectively. The random field for an edge is denoted
by L ≡ {Lx+1,y

x,y , L
x,y+1
x,y |(x, y) ∈ �

}
. The random field L is a line field. In this section,

we consider the additive white Gaussian model (173) as a degradation process. The a priori
probability density function, the original image being f , is assumed to be,

Pr{F = f} = Pr{F = f |α, γ } ≡
∑

l exp (−U(f , l|α, γ ))∫
R
|�|
∑

l exp (−U(z, l|α, γ )) dz
(228)

where

U(f , l|α, γ ) ≡ 1

2
α
∑

(x,y)∈�

((
1− lx+1,y

x,y

)
((fx,y − fx+1,y )

2 − γ 2)

+
(
1− lx,y+1

x,y

)
((fx,y − fx,y+1)

2 − γ 2)
)
. (229)

By substituting equations (173) and (228) into equation (7), the a posteriori probability density
function is given as

Pr{F = f |G = g} = Pr{F = f |G = g, α, γ, σ } =
∑

l

ρ(f , l|g, α, γ, σ ) (230)

where

ρ(f , l) = exp(−E(f , l|g, α, γ, σ ))∫
R
|�|
∑

l exp(−E(z, l|g, α, γ, σ )) dz
(231)
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E(f , l|g, α, γ, σ ) ≡ 1

2σ 2

∑
(x,y)∈�

(fx,y − gx,y )2 +
1

2
α
∑

(x,y)∈�

((
1− lx+1,y

x,y

)
× ((fx,y − fx+1,y )

2 − γ 2) +
(
1− lx,y+1

x,y

)
((fx,y − fx,y+1)

2 − γ 2)
)
. (232)

The Gibbs canonical distribution ρ(f , l) satisfies the variational principle of minimization of
the free energy functional F[ρ],

F[ρ] ≡
∫

R
|�|

∑
l

(E(f , l|g, α, γ, σ ) + ln( ρ(f , l)))ρ(f , l) df (233)

under the normalization condition
∫

R
|�|
∑

l ρ(f , l) df = 1.
To facilitate analytical treatments, we introduce the marginal probability density functions

ρx,y(ζ ), ρ
x+1,y
x,y (l) and ρx,y+1

x,y (l) defined by

ρx,y(ζ ) ≡
∫

R
|�|

∑
l

ρ(f , l) δ (ζ − fx,y ) df ζ ∈R (234)

ρx
′,y′
x,y (l) ≡

∫
R
|�|

∑
l

ρ(f , l)δ
l,l
x′,y′
x,y

df (x ′, y ′) ∈ cx,y l = 0, 1 (235)

where δ(a) is the Dirac delta function. In the mean-field approximation, the probability
distribution ρ(f , l) is approximately expressed in terms of the marginal probability
distributions:

ρ(f , l) 

 ∏
(x,y)∈�

ρx,y(fx,y )




 ∏
(x,y)∈�

ρx+1,y
x,y

(
lx+1,y
x,y

)

 ∏
(x,y)∈�

ρx,y+1
x,y

(
lx,y+1
x,y

). (236)

By substituting equation (236) into equation (233), the free energy F[ρ] can be expressed as
F[{ρx,y , ρx+1,y

x,y , ρ
x,y+1
x,y

}]
only in terms of marginal probability density functions ρx,y(fx,y ),

ρ
x+1,y
x,y

(
l
x+1,y
x,y

)
and ρx,y+1

x,y

(
l
x,y+1
x,y

)
. By taking the first variation of the approximate free energy

F[{ρx,y , ρx+1,y
x,y , ρ

x,y+1
x,y

}]
with respect to ρx,y(fx,y ), ρ

x+1,y
x,y

(
l
x+1,y
x,y

)
andρx,y+1

x,y

(
l
x,y+1
x,y

)
, we obtain

the simultaneous recursion formulae for ρx,y(fx,y ) as follows:

ρx,y(fx,y ) = 1√
2πσx,y

exp

(
− (fx,y − µx,y)

2

2σx,y2

)
(237)

µx,y =
1

2σ 2 gx,y + α
∑

(x′,y′)∈cx,y

(
1− λx′,y′x,y

)
µx′,y′

1
2σ 2 + α

∑
(x′,y′)∈cx,y

(
1− λx′,y′x,y

) (238)

1

2σ 2
x,y

= 1

2σ 2
+ α

∑
(x′ ,y′)∈cx,y

(
1− λx′ ,y′x,y

)
(239)

λx
′,y′
x,y = λx,yx′,y′ =

1

1 + exp
[
−α
{(
σ 2
x,y + σ 2

x′,y′ + (µx,y − µx′,y′)2
)
− γ 2

}]
(x ′, y ′) ∈ cx,y . (240)

In these equations, µx,y, σx,y and λx
′ ,y′
x,y mean the averages of Fx,y , (Fx,y − µx,y)2 and Lx,y :

µx,y ≡
∫ ∑

l

fx,y ρ(f , l) df =
∫
fx,y ρx,y (fx,y ) dfx,y (241)
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σ 2
x,y ≡

∫
R

∑
l

(fx,y − σx,y )2 ρ(f , l) df =
∫
(fx,y − µx,y)2 ρx,y(fx,y ) dfx,y (242)

λx
′,y′
x,y ≡

∫
R

∑
l

lx
′,y′
x,y ρ(f , l) df =

∑
l
x′,y′
x,y =0,1

lx
′ ,y′
x,y ρx

′,y′
x,y

(
lx
′,y′
x,y

)
. (243)

By using the TPM estimation (10), the restored image f̂ is obtained by

f̂ x,y = arg min
ζ∈R

(ζ − µx,y)2. (244)

Here, we can determine the hyperparametersσ, α and γ by employing the evidence framework
(35). The evidence can be expressed in terms of the energy functions E(f , l|g, α, γ, σ ) and
U(f , l|α, γ )

Pr{G = g|α, γ, σ } =
∫

R
|�|

∑
l

exp (−E(f , l|g, α, γ, σ )) df

−
∫

R
|�|

∑
l

exp (−U(f , l|α, γ )) df −
√

2πσ (245)

and can be calculated by applying the mean-field approximation to the a priori probability
density function and the a posteriori probability density function, respectively. The present
probabilistic model was first proposed by Geiger and Girosi [16]. They employed a saddle
point approximation in order to calculate the restored image although they referred to the saddle
point approximation as a mean-field approximation. We have to remark that, in general, the
saddle point approximation is different from the mean-field approximation from the standpoint
of statistical mechanics. The framework of the conventional mean-field approximation given
in the present subsection was given explicitly by Zhang [19].

5.2. Quantized line field

Application of quantum effects to information processing is an interesting subject in the
interdisciplinary field of computer science and statistical mechanics. The present author
and Horiguchi [91] introduced a quantum Markov random field model which has quantum
fluctuations instead of thermal fluctuations as a new type of fluctuation and proposed an
iterative algorithm for image restoration from the standpoint of quantum statistical mechanics.
The present author proposed a coupled Markov random field model with quantized line fields
which can take states expressed as a superposition of edge states and no edge states [92]. It
is an interesting problem not only for statistical physicists but also for computer scientists. In
this subsection, we summarize the formulation.

A quantized line field is introduced as the following a priori probability density function
Pr{F = f |α, γ, h}:

Pr{F = f |α, γ, h} = Tr[exp(−U(f |α, γ, h))]∫
R
|�|Tr[exp(−U (f |α, γ, h))] df

(246)

U(f |α, γ, h) ≡
∑

(x,y)∈�

(−hKx+1,y
x,y + α

(
I − Lx+1,y

x,y

)
((fx,y − fx+1,y)

2 − γ 2)
)

+
∑

(x,y)∈�

(−hKx,y+1
x,y + α

(
I −Lx,y+1

x,y

)
((fx,y − fx,y+1)

2 − γ 2)
)

(247)
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where

Lx+1,y
x,y ≡

∏
(x′,y′)∈�

⊗

(1− δx,x′δy,y′ )




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 + δx,x′δy,y′




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




 (248)

Lx,y+1
x,y ≡

∏
(x′,y′)∈�

⊗

(1− δx,x′δy,y′ )




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 + δx,x′δy,y′




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




 (249)

Kx+1,y
x,y ≡

∏
(x′,y′)∈�

⊗

(1− δx,x′δy,y′ )




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 + δx,x′δy,y′




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




 (250)

Kx,y+1
x,y ≡

∏
(x′,y′)∈�

⊗

(1− δx,x′δy,y′ )




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 + δx,x′δy,y′




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




 (251)

I ≡
∏

(x′,y′)∈�

⊗



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


. (252)

Here, A⊗B means the direct product of matrices A and B. The function exp(A) for any
matrix A is defined by

exp(A) ≡
+∞∑
n=0

1

n!
An. (253)

If we set h = 0, all of the nondiagonal elements of the energy matrix U (f |α, γ, h) are zero
and its eigenvalue is U(f , l|α, γ ) given in equation (229), and the corresponding eigenvector
can be given by the following equation using 22|�|-dimensional vectors

|l〉 ≡
∏

(x′,y′)∈�

⊗(∣∣lx+1,y
x,y

〉 ⊗ ∣∣lx,y+1
x,y

〉)
(254)

where

|1〉 ≡
(

1
0

)
|0〉 ≡

(
0
1

)
. (255)

The matrices Lx+1,y
x,y and Lx,y+1

x,y can be expressed in terms of the Pauli spin matrix
(1 0

0 −1

)
and 2 × 2 unit matrix. The matrices Kx+1,y

x,y and Kx,y+1
x,y can be expressed in terms of the

Pauli spin matrix
(0 1

1 0

)
and 2× 2 unit matrix. By substituting equations (173) and (246) into

equation (7), the a posteriori probability distribution is derived as follows:

Pr{F = f |G = g, α, γ, σ } = Tr(ρ (f )) (256)

ρ(f ) ≡ exp(−E(f |g, α, γ, σ ))∫
R
|�|Tr[exp (−E(f |g, α, γ, σ ))] df

(257)
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E(f |g, α, γ, σ ) ≡
∑

(x,y)∈�

(fx,y − gx,y)2
2σ 2

I + U (f |α, γ, h). (258)

The Gibbs canonical distribution ρ(f) satisfies the variational principle of minimization of
the free energy functional F[ρ],

F[ρ] ≡
∫

R
|�|

Tr{(E(f |g, α, γ, σ ) + ln(ρ(f )))ρ(f )} df (259)

under the normalization condition
∫

R
|�|Tr(ρ(f)) df = 1. We introduce the marginal

probability density function ρx,y(ζ ) and the marginal probability density matrices ρ
x+1,y
x,y

and ρ
x,y+1
x,y defined by

ρx,y(ζ ) ≡
∫

R
|�|

Tr(ρ(f))δ(ζ − fx,y ) df ζ ∈R (260)

ρx
′,y′
x,y = ρ

x,y

x′,y′ ≡
1

2

((
1 0
0 1

)
+
(

2λx
′,y′
x,y − 1

)(1 0
0 −1

)
+ τx,y

(
0 1
1 0

))
(x ′, y ′) ∈ cx,y (261)

where

λx
′,y′
x,y = λx,yx′,y′ ≡

∫
R
|�|

Tr
(
Lx′,y′
x,y ρ(f)

)
df (262)

τ x
′,y′

x,y = τ x,yx′,y′ ≡
∫

R
|�|

Tr
(
Kx′,y′

x,y ρ(f)
)

df . (263)

In the mean-field approximation, the probability density matrix ρ(f) is approximately
expressed in terms of the marginal probability density function and the marginal probability
density matrix:

ρ(f ) 

 ∏
(x,y)∈�

ρx,y(fx,y )




 ∏
(x,y)∈�

⊗(
ρx+1,y
x,y

⊗
ρx,y+1
x,y

). (264)

By substituting equation (264) into equation (259), the free energy F[ρ] can be expressed as
F[{ρx,y ,ρx+1,y

x,y ,ρ
x,y+1
x,y

}]
in terms of ρx,y(fx,y ), ρ

x+1,y
x,y and ρ

x,y+1
x,y . By taking the first variation

of the approximate free energy F[{ρx,y ,ρx+1,y
x,y ,ρ

x,y+1
x,y

}]
with respect to ρx,y(fx,y ), ρ

x+1,y
x,y and

ρ
x,y+1
x,y , we obtain the simultaneous recursion formulae for ρx,y(fx,y ) as follows:

ρx,y(fx,y ) = 1√
2πσx,y

exp

(
− (fx,y − µx,y)

2

2σx,y2

)
(265)

µx,y =
1

2σ 2 gx,y + α
∑

(x′,y′)∈cx,y

(
1− λx′,y′x,y

)
µx′,y′

1
2σ 2 + α

∑
(x′,y′)∈cx,y

(
1− λx′,y′x,y

) (266)

1

2σx,y2
= 1

2σ 2
+ α

∑
(x′ ,y′)∈cx,y

(
1− λx′,y′x,y

)
(267)

λx
′,y′
x,y = λx,yx′,y′ =

Tr
(
Lx′,y′
x,y exp

(
−Ex′,y′

x,y

))
Tr
(
exp

(−Ex′,y′
x,y

)) (x ′, y ′) ∈ cx,y (268)
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Table 10. Values of d(f∗, f̂) and �SNR (dB) in the restored image f̂ obtained for the degraded
image g∗ given in figure 20(a) by the conventional coupled Markov random field model. We set
σ = 30. For each fixed value of γ , the hyperparameters α are determined so as to maximize the
evidence which is calculated by the mean-field approximation.

γ α d(f∗, f̂) �SNR (dB)

20 0.001 9069 427.11 3.0407
30 0.001 2585 259.24 5.2091
40 0.001 1022 204.24 6.2447
50 0.001 0518 191.10 6.5336
60 0.001 2570 211.31 6.0970
70 0.001 4596 225.07 5.8230

where

Ex′,y′
x,y ≡

(
0 −h
−h α

(
σ 2
x,y + σ 2

x′,y′ + (µx,y − µx′,y′)2 − γ 2
))

. (269)

In these equations, µx,y and σx,y mean the average of Fx,y and (Fx,y − µx,y)2:

µx,y ≡
∫

R
|�|

Tr(fx,yρ(f )) df =
∫

R

fx,y ρx,y (fx,y ) dfx,y (270)

σ 2
x,y ≡

∫
R
|�|

Tr((fx,y − µx,y)2ρ(f)) df =
∫

R

(fx,y − µx,y)2 ρx,y(fx,y ) dfx,y . (271)

The evidence can be expressed in terms of the energy matrices E(f |g, α, γ, σ ) and U (f |α, γ )
Pr{G = g|α, γ, σ } =

∫
R
|�|

Tr(exp(−E(f |g, α, γ, σ )) df

−
∫

R
|�|

Tr( exp(−U (f |α, γ )) df −
√

2πσ (272)

and can be calculated by applying the mean-field approximation to the a priori probability
density matrix and the a posteriori probability density matrix, respectively.

5.3. Numerical experiments

In this section, we give some numerical experiments of image restoration by both conventional
and quantized coupled Markov random field models. The numerical experiments are carried
out for the degraded images g∗ in figure 20. The degraded image is generated from the
original image f∗ by using the additive white Gaussian noise N [0, 302]. For each fixed value
of γ , we set σ = 30 and determine the hyperparameters α so as to maximize the evidence
which is calculated by the mean-field approximation. We give in tables 10, 11, 12 and 13
the values of α, d(f ∗, f̂ ) and �SNR (dB) in the restored image f̂ obtained for the degraded
image g∗ given in figure 20 by the conventional coupled Markov random field model and the
quantized coupled Markov random field model. The restored images f̂ are shown in figures 25
and 26. From these results, we see that the quantized line field improves the quality of the
restored images.

5.4. Concluding remarks

In this section, we have explained the formulation of the coupled Markov random field models
which have a line field. In the conventional coupled Markov random field model, the edge state
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Table 11. Values of d(f∗, f̂) and �SNR (dB) in the restored image f̂ obtained for the degraded
image g∗ given in figure 20(b) by the conventional coupled Markov random field model. We set
σ = 30.

γ α d(f∗, f̂) �SNR (dB)

20 0.001 8513 517.27 2.2467
30 0.001 2812 370.75 3.6931
40 0.001 0894 316.56 4.3794
50 0.001 0456 301.82 4.5864
60 0.001 1251 304.62 4.5462
70 0.001 3375 312.96 4.4290

Table 12. Values of d(f∗, f̂) and �SNR (dB) in the restored image f̂ obtained for the degraded
image g∗ given in figure 20(a) by the quantized coupled Markov random field model. We set
σ = 30 and h = 1.5.

γ α d(f∗, f̂) �SNR (dB)

20 0.001 9555 164.87 7.1746
30 0.001 1505 155.17 7.4380
40 0.000 7568 165.54 7.1572
50 0.000 5437 182.84 6.7255
60 0.000 4151 203.23 6.2663
70 0.000 3304 225.16 5.8212

Table 13. Values of d(f∗, f̂) and �SNR (dB) in the restored image f̂ obtained for the degraded
image g∗ given in figure 20(b) by the quantized coupled Markov random field model. We set
σ = 30 and h = 1.5.

γ α d(f∗, f̂) �SNR (dB)

20 0.002 0402 288.30 4.7855
30 0.001 2304 257.39 5.2779
40 0.000 8027 245.67 5.4804
50 0.000 5678 248.18 5.4362
60 0.000 4283 258.36 5.2617
70 0.000 3381 272.60 5.0286

has two possibilities, the ‘edge’ state and ‘no edge’ state. The present author has extended it
to the coupled Markov random field model with quantized line field and has shown that the
quality in restored images can be improved.

The present author also applied the cluster variation method to the conventional coupled
Markov random field model and showed that the quality of the restored image can be
improved [93]. In the mean-field approximation, the a posteriori probability distribution
is approximately expressed in terms of the product of the marginal probability distributions
of each pixel and each edge as shown in equation (236) and it is difficult to treat the
correlations between the nearest-neighbour pairs of pixels. In the cluster variation method, the
a posteriori probability distribution is assumed to be approximately expressed in the following
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(a) (b)

Figure 25. Restored images f̂ obtained by the conventional coupled Markov random field model.
The degraded images g∗ are given in figure 20. (a) ‘Home’ (σ = 30, γ = 50, α = 0.001 0518);
(b) ‘mandrill’ (σ = 30, γ = 50, α = 0.001 0456).

(a) (b)

Figure 26. Restored images f̂ obtained by the quantized coupled Markov random field model.
The degraded images g∗ are given in figure 20. (a) ‘Home’ (σ = 30, γ = 30, h = 1.5, α =
0.001 1505); (b) ‘mandrill’ (σ = 30, γ = 40, h = 1.5, α = 0.000 8027).

factorizable form:

ρ(f , l) 

 ∏
(x,y)∈�

ρx,y(fx,y )




 ∏
(x,y)∈�

ρ
x+1,y
x,y

(
fx,y , l

x+1,y
x,y , fx+1,y

)
ρ(fx,y)ρ(fx+1,y )




×

 ∏
(x,y)∈�

ρ
x,y+1
x,y

(
fx,y , l

x,y+1
x,y , fx,y+1

)
ρ(fx,y )ρ(fx,y+1)


 (273)

where ρx,y(fx,y ) is given in equation (234) and ρx
′,y′
x,y (ζ, l, ζ

′) is defined as follows:

ρx
′,y′
x,y (ζ, l, ζ

′) ≡
∫

R
|�|

∑
l

ρ(f , l) δ(fx,y − ζ )δl,lx′,y′x,y
δ(fx′,y′ − ζ ′) df

(x ′, y ′) ∈ cx,y l = 0, 1 ζ, ζ ′ ∈R. (274)

In equation (273), a decoupling of neighbour pixels is unnecessary in calculating the correlation
between the nearest-neighbour pairs of pixels. The cluster variation method can improve the
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(a) (b) (c) (d ) (e) (f )

Figure 27. Interactions V (l) in the line field of the coupled Markov random field model. All solid
circles mean pixels. The open rectangles and the solid rectangles correspond to the ‘no edge state’
and the ‘edge state,’ respectively.

image quality of image restoration by the coupled Markov random field model. In the present
section, we have demonstrated the coupled Markov random field model with quantized line
fields in order to excite physicists’ curiosity, but the conventional coupled Markov random
field model may also improve the quality of the restored image by adopting more advanced
mean-field approximations such as cluster variation method.

In practical applications, the coupled Markov random field model with interactions in the
line field is employed. Its energy function is given as

E(f , l|g, α, ω, σ ) ≡ 1

2σ 2

∑
(x,y)∈�

(fx,y − gx,y)2 +
1

2
α
∑

(x,y)∈�

((
1− lx+1,y

x,y

)
(fx,y − fx+1,y )

2

+
(
1− lx,y+1

x,y

)
(fx,y − fx,y+1)

2
)

+ ωV (l). (275)

Here V (l) denotes interactions in the line field l and is illustrated in figure 27. The coupled
Markov random field model was proposed by Geman and Geman [6] and Jeng and Woods [8],
and the algorithm by the mean-field approximation was derived by Zhang [19]. The
interaction term V (l) in the line field l has a very complicated structure. Figure 27(a)
means that the edge configuration associated with the nearest-neighbour square plaquette has
no edges. Figure 27(d) means that the line passes straight through the nearest-neighbour
square plaquette. Figures 27(b) and (c) correspond to the line terminating and turning
at the nearest-neighbour square plaquette, respectively. The value of V (l) corresponds
to the energy value for each configuration of the edges in the nearest-neighbour square
plaquette and is determined ad hoc. These values have been given in [6, 8]. If we
focus only on the edge configuration, the model (275) corresponds to a two-dimensional
Ising model with four-body interactions. In statistical mechanics, many two-dimensional
Ising models with multi-body interactions have been investigated. It is interesting to study
the critical phenomena of the model (275) from the standpoint of statistical mechanics
and to clarify the relationship between the edge structure in grey-level images and critical
phenomena.

In section 5.2, we have reviewed the coupled Markov random field model with quantized
line states as one of the extensions of the conventional Markov random field model (see
figure 27). On the other hand, some physicists [98, 99] also proposed a coupled Markov
random field model with continuous line fields from the standpoint of the plane rotator model
in statistical mechanics and investigated how the model gives better quality of restored image.
However, the coupled Markov random field model with continuous line fields has not been
investigated sufficiently yet and many open problems still remain, for example the estimation
of hyperparameters.

Before closing this section, we compare the coupled Markov random field model with
some conventional filters in image processing. In the conventional image processing, the
low-pass filter and median filter are applied to the reduction of noise. In figures 29 and
30, we show the restored images f̂ obtained by applying the 3 × 3 low-pass filter and the
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(a) (b)

Figure 28. Restored images f̂ obtained by means of the conventional coupled Markov random
field model given in equation (275). The degraded images g∗ are given in figure 20. (a) ‘Home’
(σ = 30, α = 0.000 603 26, ω = 1.75, d(f∗, f̂) = 171.58); (b) ‘mandrill’ (σ = 30, α =
0.000 403 85, ω = 1.75, d(f∗, f̂) = 250.23).

(a) (b)

Figure 29. Restored images f̂ obtained by means of the 3×3 low-pass filter given in equation (4).
The degraded images g∗ are given in figure 20. (a) ‘Home’ (d(f∗, f̂) = 173.18); (b) ‘mandrill’
(d(f∗, f̂) = 312.10).

3 × 3 median filter to the degraded images g∗ given in figure 20. The 3 × 3 low-pass
filter and the median filter have already been explained briefly in section 1 and are given as
follows:

(i) 3× 3 low-pass filter: f̂ x,y = 1
9

∑x+1
x′=x−1

∑y+1
y′=y−1gx′,y′ .

(ii) 5× 5 low-pass filter: f̂ x,y = 1
25

∑x+2
x′=x−2

∑y+2
y′=y−2gx′,y′ .

(iii) 3× 3 median filter: f̂ x,y = med{gx′ ,y′ |x ′ = x − 1, x, x + 1, y ′ = y − 1, y, y + 1}.
(iv) 5× 5 median filter: f̂ x,y = med{gx′ ,y′ |x − 2 � x ′ � x + 2, y − 2 � y ′ � y + 2}.
Here, the symbols 3 × 3 and 5 × 5 refer to the size of window in the filters. It is obvious
that these methods cannot erase the noise to a satisfactory level, if we take a 3 × 3 low-
pass filter and a 3 × 3 median filter. On the other hand, in the 5 × 5 low-pass filter and
the 5 × 5 median filter, although the noise can be erased sufficiently, the restored image
has been obtained as a blurred image (see figures 31 and 32). It is obvious that the results
obtained by the coupled Markov random field model are better than those with conventional
filters.
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(a) (b)

Figure 30. Restored images f̂ obtained by means of the 3× 3 median filter. The degraded images
g∗ are given in figure 20. (a) ‘Home’ (d(f∗, f̂) = 216.93); (b) ‘mandrill’ (d(f∗, f̂) = 369.07).

(a) (b)

Figure 31. Restored images f̂ obtained by means of the 5×5 low-pass filter given in equation (4).
The degraded images g∗ are given in figure 20. (a) ‘Home’ (d(f∗, f̂) = 235.12); (b) ‘mandrill’
(d(f∗, f̂) = 380.78).

(a) (b)

Figure 32. Restored images f̂ obtained by means of the 5× 5 median filter. The degraded images
g∗ are given in figure 20. (a) ‘Home’ (d(f∗, f̂) = 222.81); (b) ‘mandrill’ (d(f∗, f̂) = 400.09).
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6. Summary and discussions

In the present review, we discussed probabilistic image restoration techniques using Bayesian
statistics and statistical mechanics. We explained some detailed derivations of the recursion
formulae to determine the restored image and the hyperparameters and gave the explicit
algorithms. Our main topics are binary image restoration for the degraded images generated by
the binary symmetric channel and grey-level image restoration under additive white Gaussian
noise.

In binary image restoration, the relationship with the Ising model has been clarified
and the algorithms to determine the restored image and the hyperparameters are derived
from the mean-field and Bethe approximations. It is shown that the results in the Bethe
approximation are absolutely better than those in the mean-field approximation when we have
to estimate the hyperparameters from the given degraded image by means of the evidence
framework, which is a familiar technique to determine the hyperparameters in statistics.
However, it should be remarked that such a difference between the mean-field approximation
and the Bethe approximation appears only if we determine hyperparameters from the given
degraded image by the maximization of evidence. In other words, the accuracy of evidence is
strongly dependent on the approximation. If the hyperparameters have already been estimated
with high accuracy by a different method or if the original values of the hyperparameters
are known, all we have to do is to estimate only the restored image. In such a situation,
although the Bethe approximation can supply us a better restored image than the mean-field
approximation, the difference in the restored images is not as large as when the hyperparameters
are determined in the maximization of the evidence. Clearly, the most important factor in
Bayesian image restoration is the selection of the a priori probability. If we have chosen an
a priori probability that does not fit our treated images at all, it is difficult to obtain a restored
image of high quality however accurate the approximation we adopt. On the other hand, not
much different image is given depending on the choice of hyperparameter values. This means
that probabilistic image processing by Bayesian statistics has robustness against errors in the
hyperparameter estimation. Although robustness for different choices of a priori probabilities
is indeed a more interesting problem than that for hyperparameters within the same a priori
probability, such an investigation has not yet been carried out very extensively.

As for grey-level image restoration,we first demonstrated the determination of the restored
image and hyperparameters by a solvable probabilistic model. The solvable probabilistic
model corresponds to the Gaussian model in statistical mechanics and the exact expressions
of some statistical quantities are derived by the discrete Fourier transform. However, the
Gaussian model is not sufficient to erase the noise in the degraded image. If we choose a large
value of the hyperparameter for smoothing, some edges are erased in addition to noise and the
restored image becomes blurred.

In order to improve this disadvantage of the probabilistic image restoration scheme by
the Gaussian model, the line field is sometimes employed. With the line field introduced, it is
hard to treat the probabilistic model and the coupled Markov random field model exactly. In
the present review, we introduced the algorithm constructed by the mean-field approximation.
We also demonstrated the coupled Markov random field model with the quantized line field.
Although the intensity value at each pixel is observable in the degraded image, the edge state
between the nearest-neighbour pairs of pixels is unobservable and subjective. From physical
interests, we illustrated the scheme of image restoration by the quantized line field although
we do not have any a priori reason to introduce the quantum-mechanical state as an edge state.
The quantized line field was introduced as a state expressed in terms of the superposition of
the edge state and the no edge state, such that
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|lx,y〉 = A|lx,y = 1〉 + B|lx,y = 0〉. (276)

As shown in some numerical experiments, such a quantized line field can lead to the
improvement of quality in the restored image, mainly due to the achievement of smoothing
and noise reduction without erasing the edges.

In the present review, we demonstrated the hyperparameter determination by
maximization of the evidence. As for filters, we explained the constrained least mean square
filter (169)–(172), a typical basic linear filter [1, 80]. By extending the constrained least
mean square filter, other frameworks for hyperparameter determination in the Markov random
field model have also been proposed [94–96]. The frameworks are generally referred to as
constrained optimization. In particular, Geman et al [94] introduced some forbidden local
patterns in the line image l = {lx+1,y

x,y , l
x,y+1
x,y |(x, y) ∈ �

}
determined by the line variables,

l
x+1,y
x,y and lx,y+1

x,y , and imposed the constraints that the total number K(l) of those forbidden
local patterns should be equal to zero in the line image as follows:

l̂ = arg min
l:K(l)=0

∑
(x,y)∈�

D(l|g) (277)

where D(l|g) is the distance between the line image l and the given observed image
g = {gx,y |(x, y) ∈ �}. Selections of the definitions in K(l) and D(l|g) are dependent
on what type of edge detection we desire. By introducing the Lagrange multiplier γ to ensure
the constraint K(l) = 0, we can derive the following energy function

H(l|g) = D(l|g) + γK(l) (278)

where the second term can be regarded as a penalty term. Their framework can also be
regarded as an extension of the standard regularization theory proposed by Poggio et al [97]
and corresponds to searching for the ground state configuration of an energy function with the
penalty term to exclude forbidden patterns. They introduced the Gibbs distribution in order to
adopt an annealing procedure to search for the ground state configuration. Morita and Tanaka
[96] gave a similar formulation for the binary image restoration as follows:

f̂ = arg min
z:J (z)=J (f)

∑
(x,y)∈�

d(f ,g) (279)

where d(f ,g) is given by equation (163) and J (z) is defined as

J (z) ≡
∑

(x,y)∈�
((zx,y − zx+1,y )

2 + (zx,y − zx,y+1)
2). (280)

The original image is denoted by f and J (f) is the number of nearest-neighbour pairs of
pixels with different grades of each other in the binary image. By introducing the Lagrange
multiplier γ to ensure the constraint condition J (z) = J (f ), we can derive the following
energy function:

H(z|g, γ ) = d(z,g) + γ (J (z)− J (f)). (281)

Here, we have to estimate the number J (f) of nearest-neighbour pairs of pixels with
different grades of each other in the original image f only from the given degraded image g.
We also gave the estimation framework in [96]. For binary image restoration, H(z|g, γ =
α/β) is equivalent to E(z|g, α, β)/β defined by equation (80) except for a constant factor
−αJ (f)/β.

We can calculate the configuration as well as thermal averages for some quantities exactly
in the Gaussian model as demonstrated in section 4. The configuration average is possible if
we assume all the ideal generation processes of original images from the a priori probability
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density function and all the ideal degradation processes. In the present review,we demonstrated
the calculation of the configuration average of the mean square error between original images
and their corresponding restored images using the a priori probability density function and
the conditional probability density function of the degradation process with the original values
of the hyperparameters. By using the results, we can estimate the statistical performance
when the probabilistic image restoration scheme by the Gaussian model is applied to degraded
images generated through the ideal original-image generating process and the ideal degradation
process. Moreover, by calculating the configuration average of the evidence, we can obtain
the statistical behaviour of the iteration process in the hyperparameter determination algorithm
based on the maximization of the evidence. From these results obtained in the configuration
average procedure, we know some important statistical performance of the proposed scheme
without heavy numerical experiments.

It is well known that the configuration average is an important procedure in spin
glass theory. Now it may occur to statistical physicists that the general framework for
the design of the statistical performance estimation system for any probabilistic image
processing systems may be formulated by results in spin glass theory. Such systematic
investigations have not yet been done in practical image processing systems. In spin glass
theory, many methods have been proposed to calculate the configuration average in the
random classical spin systems with finite-range interactions including the two-dimensional
±J model based on the Bethe approximation [63–67]. I believe that those methods are
applicable to the statistical performance estimation of probabilistic image processing systems
although we have to note that the probabilistic model to treat image restoration is a correlated
random-field model, which is a little different from spin glasses. This is a challenging
problem.

Recently, many statistical physicists have participated in the investigation of probabilistic
image processing [32]. Renormalization techniques have also been applied to probabilistic
image restoration [100]. However, most of these investigations are directed towards
applications of statistical-mechanical techniques to probabilistic image processing. I believe
that the most important thing we, the physicists, have to aim at is to investigate the deep
origin or nature of probabilistic image processing. Evidently, interactions of the classical
spin systems play an important role in probabilistic image processing. Besides, most image
processing systems including conventional filters work well in large-scale systems. This
fact means that the cooperative phenomena in statistical mechanics play a very important
role.

Although we have elucidated the probabilistic approaches to image restoration in the
present review, we also have the problem of image segmentation as the other basic issue
in probabilistic image processing. Before closing this review, we briefly summarize image
segmentation as an example of applications of probabilistic models and statistical-mechanical
techniques to other image processing problems. Image segmentation is the problem of
classifing a given grey-level image into a few different areas. Image segmentation is
often applied to object recognition as a pre-processing step and is regarded as an important
information processing procedure for industrial and medical applications. Now we denote the
observed image by g = {gx,y |(x, y) ∈ �} and consider classifying the observed image g to
K different kinds of levels, k = 0, 1, 2, . . . ,K − 1. In the segmented image, the set of all
possible states at each pixel is denoted by {0, 1, 2, . . . ,K − 1}. A most typical a posteriori
probability distribution for the segmented image f = {fx,y |(x, y) ∈ �} is given as follows,

ρ(f |g, α, β, {γk}) =
exp
(
βδfx,y ,φ(gx,y ) + αδfx,y ,fx+1,y + αδfx,y ,fx,y+1

)
∑

z exp
(
βδzx,y,φ(gx,y ) + αδzx,y ,zx+1,y + αδzx,y ,zx,y+1

) (282)
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where

φ(gx,y ) ≡ arg min
k=0,1,2,...,K−1

(γk − gx,y )2. (283)

This probabilistic model is just a Potts model with non-uniform external fields and nearest-
neighbour interactions. Using this a posteriori probability distribution and the mean-field
approximation, the probabilistic image segmentation algorithm can be constructed. Zhang
[26, 27] investigated the scheme including hyperparameter estimation by maximization of the
evidence. He employed the expectation-maximization procedure to maximize the evidence and
combined the expectation-maximization algorithm with the mean-field approximation. More
complicated probabilistic models for image segmentation were also proposed [24, 94, 101].
Moreover, probabilistic approaches based on Bayesian statistics and statistical mechanics were
also applied to object detection [102, 103], motion detection [104], decoding of compressed
images [105, 106] and colour image processing [87, 107, 108].
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